Estimating effect of multiple treatments#
[1]:
from dowhy import CausalModel
import dowhy.datasets
import warnings
warnings.filterwarnings('ignore')
[2]:
data = dowhy.datasets.linear_dataset(10, num_common_causes=4, num_samples=10000,
num_instruments=0, num_effect_modifiers=2,
num_treatments=2,
treatment_is_binary=False,
num_discrete_common_causes=2,
num_discrete_effect_modifiers=0,
one_hot_encode=False)
df=data['df']
df.head()
[2]:
X0 | X1 | W0 | W1 | W2 | W3 | v0 | v1 | y | |
---|---|---|---|---|---|---|---|---|---|
0 | 1.767708 | 0.055920 | -0.240717 | -0.843351 | 1 | 3 | 6.726900 | 5.318777 | 295.611567 |
1 | -1.470650 | -0.938818 | -0.975773 | -0.355186 | 3 | 3 | 16.839656 | 12.739667 | -1120.844957 |
2 | -0.342821 | 1.699236 | 2.115395 | -1.886431 | 1 | 1 | 3.640529 | 6.192848 | 194.403694 |
3 | 0.083615 | 0.197779 | 1.158983 | -2.716997 | 1 | 3 | 5.658150 | 2.749601 | 100.307163 |
4 | 1.376552 | 0.300785 | -0.641883 | -1.958623 | 3 | 0 | 12.339354 | 10.039195 | 784.314906 |
[3]:
model = CausalModel(data=data["df"],
treatment=data["treatment_name"], outcome=data["outcome_name"],
graph=data["gml_graph"])
[4]:
model.view_model()
from IPython.display import Image, display
display(Image(filename="causal_model.png"))


[5]:
identified_estimand= model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)
Estimand type: EstimandType.NONPARAMETRIC_ATE
### Estimand : 1
Estimand name: backdoor
Estimand expression:
d
─────────(E[y|W1,W3,W0,W2])
d[v₀ v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W1,W3,W0,W2,U) = P(y|v0,v1,W1,W3,W0,W2)
### Estimand : 2
Estimand name: iv
No such variable(s) found!
### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!
Linear model#
Let us first see an example for a linear model. The control_value and treatment_value can be provided as a tuple/list when the treatment is multi-dimensional.
The interpretation is change in y when v0 and v1 are changed from (0,0) to (1,1).
[6]:
linear_estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.linear_regression",
control_value=(0,0),
treatment_value=(1,1),
method_params={'need_conditional_estimates': False})
print(linear_estimate)
*** Causal Estimate ***
## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE
### Estimand : 1
Estimand name: backdoor
Estimand expression:
d
─────────(E[y|W1,W3,W0,W2])
d[v₀ v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W1,W3,W0,W2,U) = P(y|v0,v1,W1,W3,W0,W2)
## Realized estimand
b: y~v0+v1+W1+W3+W0+W2+v0*X0+v0*X1+v1*X0+v1*X1
Target units: ate
## Estimate
Mean value: 34.04612866069517
You can estimate conditional effects, based on effect modifiers.
[7]:
linear_estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.linear_regression",
control_value=(0,0),
treatment_value=(1,1))
print(linear_estimate)
*** Causal Estimate ***
## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE
### Estimand : 1
Estimand name: backdoor
Estimand expression:
d
─────────(E[y|W1,W3,W0,W2])
d[v₀ v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W1,W3,W0,W2,U) = P(y|v0,v1,W1,W3,W0,W2)
## Realized estimand
b: y~v0+v1+W1+W3+W0+W2+v0*X0+v0*X1+v1*X0+v1*X1
Target units:
## Estimate
Mean value: 34.04612866069517
### Conditional Estimates
__categorical__X0 __categorical__X1
(-3.415, -0.17] (-3.972, -1.109] -70.424952
(-1.109, -0.514] -33.177203
(-0.514, -0.0098] -14.653352
(-0.0098, 0.551] 4.920673
(0.551, 3.39] 37.852659
(-0.17, 0.411] (-3.972, -1.109] -38.279800
(-1.109, -0.514] -5.334605
(-0.514, -0.0098] 15.731057
(-0.0098, 0.551] 36.055460
(0.551, 3.39] 67.421581
(0.411, 0.919] (-3.972, -1.109] -20.080857
(-1.109, -0.514] 14.305287
(-0.514, -0.0098] 34.978155
(-0.0098, 0.551] 54.666784
(0.551, 3.39] 87.340856
(0.919, 1.521] (-3.972, -1.109] -1.487976
(-1.109, -0.514] 33.019920
(-0.514, -0.0098] 53.622393
(-0.0098, 0.551] 73.352510
(0.551, 3.39] 106.654895
(1.521, 4.496] (-3.972, -1.109] 29.589954
(-1.109, -0.514] 64.460886
(-0.514, -0.0098] 82.707948
(-0.0098, 0.551] 104.178150
(0.551, 3.39] 133.896098
dtype: float64
More methods#
You can also use methods from EconML or CausalML libraries that support multiple treatments. You can look at examples from the conditional effect notebook: https://py-why.github.io/dowhy/example_notebooks/dowhy-conditional-treatment-effects.html
Propensity-based methods do not support multiple treatments currently.