Estimating effect of multiple treatments

[1]:
from dowhy import CausalModel
import dowhy.datasets

import warnings
warnings.filterwarnings('ignore')
[2]:
data = dowhy.datasets.linear_dataset(10, num_common_causes=4, num_samples=10000,
                                     num_instruments=0, num_effect_modifiers=2,
                                     num_treatments=2,
                                     treatment_is_binary=False,
                                     num_discrete_common_causes=2,
                                     num_discrete_effect_modifiers=0,
                                     one_hot_encode=False)
df=data['df']
df.head()
[2]:
X0 X1 W0 W1 W2 W3 v0 v1 y
0 0.688028 -0.570179 -0.787887 0.479003 3 3 9.679098 6.204148 108.190491
1 -0.288296 -0.603436 0.162024 -0.651557 0 0 2.372026 -3.495385 12.209979
2 1.905892 -0.833302 1.485347 -1.040674 2 1 13.177795 -0.545013 139.956383
3 0.621439 -0.585854 1.408494 1.183161 2 0 10.331170 7.882728 95.378611
4 0.101068 -0.273072 -0.117280 -0.515313 2 3 11.525165 0.560455 127.060069
[3]:
model = CausalModel(data=data["df"],
                    treatment=data["treatment_name"], outcome=data["outcome_name"],
                    graph=data["gml_graph"])
[4]:
model.view_model()
from IPython.display import Image, display
display(Image(filename="causal_model.png"))
../_images/example_notebooks_dowhy_multiple_treatments_4_0.png
../_images/example_notebooks_dowhy_multiple_treatments_4_1.png
[5]:
identified_estimand= model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W2,W0,W3,W1])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W2,W0,W3,W1,U) = P(y|v0,v1,W2,W0,W3,W1)

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Linear model

Let us first see an example for a linear model. The control_value and treatment_value can be provided as a tuple/list when the treatment is multi-dimensional.

The interpretation is change in y when v0 and v1 are changed from (0,0) to (1,1).

[6]:
linear_estimate = model.estimate_effect(identified_estimand,
                                        method_name="backdoor.linear_regression",
                                        control_value=(0,0),
                                        treatment_value=(1,1),
                                        method_params={'need_conditional_estimates': False})
print(linear_estimate)
*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W2,W0,W3,W1])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W2,W0,W3,W1,U) = P(y|v0,v1,W2,W0,W3,W1)

## Realized estimand
b: y~v0+v1+W2+W0+W3+W1+v0*X0+v0*X1+v1*X0+v1*X1
Target units: ate

## Estimate
Mean value: 5.078224345610501

You can estimate conditional effects, based on effect modifiers.

[7]:
linear_estimate = model.estimate_effect(identified_estimand,
                                        method_name="backdoor.linear_regression",
                                        control_value=(0,0),
                                        treatment_value=(1,1))
print(linear_estimate)
*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W2,W0,W3,W1])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W2,W0,W3,W1,U) = P(y|v0,v1,W2,W0,W3,W1)

## Realized estimand
b: y~v0+v1+W2+W0+W3+W1+v0*X0+v0*X1+v1*X0+v1*X1
Target units:

## Estimate
Mean value: 5.078224345610501
### Conditional Estimates
__categorical__X0  __categorical__X1
(-3.758, -0.64]    (-4.402, -1.361]    -72.578624
                   (-1.361, -0.783]    -39.306583
                   (-0.783, -0.286]    -19.224005
                   (-0.286, 0.334]       1.070074
                   (0.334, 3.166]       35.627126
(-0.64, -0.0764]   (-4.402, -1.361]    -57.395848
                   (-1.361, -0.783]    -23.361290
                   (-0.783, -0.286]     -3.911810
                   (-0.286, 0.334]      17.008063
                   (0.334, 3.166]       49.812228
(-0.0764, 0.412]   (-4.402, -1.361]    -47.951547
                   (-1.361, -0.783]    -15.183702
                   (-0.783, -0.286]      4.696040
                   (-0.286, 0.334]      25.565515
                   (0.334, 3.166]       57.882635
(0.412, 0.997]     (-4.402, -1.361]    -38.293553
                   (-1.361, -0.783]     -6.556265
                   (-0.783, -0.286]     13.596805
                   (-0.286, 0.334]      34.149412
                   (0.334, 3.166]       68.228800
(0.997, 4.057]     (-4.402, -1.361]    -24.095849
                   (-1.361, -0.783]      7.787794
                   (-0.783, -0.286]     27.864159
                   (-0.286, 0.334]      48.219762
                   (0.334, 3.166]       83.308854
dtype: float64

More methods

You can also use methods from EconML or CausalML libraries that support multiple treatments. You can look at examples from the conditional effect notebook: https://py-why.github.io/dowhy/example_notebooks/dowhy-conditional-treatment-effects.html

Propensity-based methods do not support multiple treatments currently.