Estimating effect of multiple treatments#

[1]:
from dowhy import CausalModel
import dowhy.datasets

import warnings
warnings.filterwarnings('ignore')
[2]:
data = dowhy.datasets.linear_dataset(10, num_common_causes=4, num_samples=10000,
                                     num_instruments=0, num_effect_modifiers=2,
                                     num_treatments=2,
                                     treatment_is_binary=False,
                                     num_discrete_common_causes=2,
                                     num_discrete_effect_modifiers=0,
                                     one_hot_encode=False)
df=data['df']
df.head()
[2]:
X0 X1 W0 W1 W2 W3 v0 v1 y
0 0.504656 0.967232 -0.970066 -2.217805 2 1 -4.162334 -4.536053 -45.392428
1 0.775272 0.411631 0.646069 -1.206054 0 0 -2.270521 0.449863 -24.278870
2 -0.880358 -1.475509 -0.400533 0.258120 2 2 14.910592 3.347291 -30.063886
3 0.277932 0.314129 -0.068397 -1.114949 3 1 10.073269 3.658561 175.000075
4 -2.218957 -0.645205 -0.120087 -0.740175 0 0 -3.975991 -4.182782 -158.147502
[3]:
model = CausalModel(data=data["df"],
                    treatment=data["treatment_name"], outcome=data["outcome_name"],
                    graph=data["gml_graph"])
[4]:
model.view_model()
from IPython.display import Image, display
display(Image(filename="causal_model.png"))
../_images/example_notebooks_dowhy_multiple_treatments_4_0.png
../_images/example_notebooks_dowhy_multiple_treatments_4_1.png
[5]:
identified_estimand= model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W2,W1,W0,W3])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W2,W1,W0,W3,U) = P(y|v0,v1,W2,W1,W0,W3)

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Linear model#

Let us first see an example for a linear model. The control_value and treatment_value can be provided as a tuple/list when the treatment is multi-dimensional.

The interpretation is change in y when v0 and v1 are changed from (0,0) to (1,1).

[6]:
linear_estimate = model.estimate_effect(identified_estimand,
                                        method_name="backdoor.linear_regression",
                                        control_value=(0,0),
                                        treatment_value=(1,1),
                                        method_params={'need_conditional_estimates': False})
print(linear_estimate)
*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W2,W1,W0,W3])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W2,W1,W0,W3,U) = P(y|v0,v1,W2,W1,W0,W3)

## Realized estimand
b: y~v0+v1+W2+W1+W0+W3+v0*X0+v0*X1+v1*X0+v1*X1
Target units: ate

## Estimate
Mean value: 25.979841502154613

You can estimate conditional effects, based on effect modifiers.

[7]:
linear_estimate = model.estimate_effect(identified_estimand,
                                        method_name="backdoor.linear_regression",
                                        control_value=(0,0),
                                        treatment_value=(1,1))
print(linear_estimate)
*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W2,W1,W0,W3])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W2,W1,W0,W3,U) = P(y|v0,v1,W2,W1,W0,W3)

## Realized estimand
b: y~v0+v1+W2+W1+W0+W3+v0*X0+v0*X1+v1*X0+v1*X1
Target units:

## Estimate
Mean value: 25.979841502154613
### Conditional Estimates
__categorical__X0  __categorical__X1
(-3.776, -0.776]   (-3.101, -0.194]     11.079653
                   (-0.194, 0.397]      16.318110
                   (0.397, 0.89]        19.601416
                   (0.89, 1.484]        22.437455
                   (1.484, 4.885]       27.590046
(-0.776, -0.2]     (-3.101, -0.194]     15.383771
                   (-0.194, 0.397]      20.403288
                   (0.397, 0.89]        23.340525
                   (0.89, 1.484]        26.486628
                   (1.484, 4.885]       31.760537
(-0.2, 0.321]      (-3.101, -0.194]     17.709720
                   (-0.194, 0.397]      22.911817
                   (0.397, 0.89]        25.921107
                   (0.89, 1.484]        29.108866
                   (1.484, 4.885]       34.218027
(0.321, 0.891]     (-3.101, -0.194]     20.066997
                   (-0.194, 0.397]      25.370238
                   (0.397, 0.89]        28.390558
                   (0.89, 1.484]        31.561974
                   (1.484, 4.885]       36.636974
(0.891, 3.851]     (-3.101, -0.194]     24.532166
                   (-0.194, 0.397]      29.585736
                   (0.397, 0.89]        32.514156
                   (0.89, 1.484]        35.856095
                   (1.484, 4.885]       40.702137
dtype: float64

More methods#

You can also use methods from EconML or CausalML libraries that support multiple treatments. You can look at examples from the conditional effect notebook: https://py-why.github.io/dowhy/example_notebooks/dowhy-conditional-treatment-effects.html

Propensity-based methods do not support multiple treatments currently.