import numpy as np
import networkx as nx
from importlib import import_module
from dowhy.graph_learners import GraphLearner
from dowhy.utils.graph_operations import *
[docs]class GES(GraphLearner):
'''
Causal Discovery using GES method.
Link: https://pypi.org/project/ges/
'''
def __init__(self, data, full_method_name, *args, **kwargs):
super().__init__(data, full_method_name, *args, **kwargs)
library_class = import_module(full_method_name)
self._method = library_class
[docs] def learn_graph(self, labels=None):
'''
Discover causal graph and return the graph in DOT format.
'''
self._adjacency_matrix, self.score = self._method.fit_bic(self._data.to_numpy())
self._adjacency_matrix = np.asarray(self._adjacency_matrix)
# If labels provided
if labels is not None:
self._labels = labels
self._graph_dot = adjacency_matrix_to_graph(self._adjacency_matrix, self._labels)
# Return in valid DOT format
self._graph_dot = str_to_dot(self._graph_dot.source)
return self._graph_dot