import pandas as pd
from dowhy.interpreters.textual_interpreter import TextualInterpreter
[docs]class TextualEffectInterpreter(TextualInterpreter):
SUPPORTED_ESTIMATORS = ["all"]
def __init__(self, instance, **kwargs):
super().__init__(instance, **kwargs)
# Setting estimator attribute for convenience
self.estimator = self.estimate.estimator
[docs] def interpret(self):
"""Interpret causal effect by showing how much a unit change in treatment will cause change in the outcome.
"""
interpret_text = ""
treatments_str = ",".join(self.estimator._treatment_name)
if pd.api.types.is_numeric_dtype(self.estimator._outcome.dtypes):
# Outcome is numeric
if all(pd.api.types.is_numeric_dtype(tr_dtype) or pd.api.types.is_bool_dtype(tr_dtype) for tr_dtype in self.estimator._treatment.dtypes):
# Treatments are also numeric or binary
interpret_text += "Increasing the treatment variable(s) [{0}] from {1} to {2} causes an increase of {3} in the expected value of the outcome [{4}]".format(treatments_str, self.estimator._control_value, self.estimator._treatment_value, self.estimate.value, self.estimator._outcome_name)
else:
raise NotImplementedError("Interpretation not supported yet for categorical treatments")
else:
# Outcome is categorical
if all(pd.api.types.is_numeric_dtype(tr_dtype) or pd.api.types.is_bool_dtype(tr_dtype) for tr_dtype in self.estimator._treatment.dtypes):
# Treatments are numeric or binary
interpret_text += "Increasing the treatment variable(s) [{0}] from {1} to {2} causes an increase of {3} in the expected value of the outcome [{4}]".format(treatments_str, self.estimator._control_value, self.estimator._treatment_value, self.estimate.value, self.estimator._outcome_name)
else:
raise NotImplementedError("Interpretation not supported yet for categorical treatments")
interpret_text += ", over the data distribution/population represented by the dataset."
self.show(interpret_text)
return interpret_text