Source code for dowhy.causal_estimator

import logging

import numpy as np
import pandas as pd
import sympy as sp
from collections import namedtuple
from sklearn.utils import resample

import dowhy.interpreters as interpreters
from dowhy.utils.api import parse_state

[docs]class CausalEstimator: """Base class for an estimator of causal effect. Subclasses implement different estimation methods. All estimation methods are in the package "dowhy.causal_estimators" """ # The default number of simulations for statistical testing DEFAULT_NUMBER_OF_SIMULATIONS_STAT_TEST = 1000 # The default number of simulations to obtain confidence intervals DEFAULT_NUMBER_OF_SIMULATIONS_CI = 100 # The portion of the total size that should be taken each time to find the confidence intervals # 1 is the recommended value # https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading24.pdf # https://projecteuclid.org/download/pdf_1/euclid.ss/1032280214 DEFAULT_SAMPLE_SIZE_FRACTION = 1 # The default Confidence Level DEFAULT_CONFIDENCE_LEVEL = 0.95 # Number of quantiles to discretize continuous columns, for applying groupby NUM_QUANTILES_TO_DISCRETIZE_CONT_COLS = 5 # Prefix to add to temporary categorical variables created after discretization TEMP_CAT_COLUMN_PREFIX = "__categorical__" DEFAULT_NOTIMPLEMENTEDERROR_MSG = "not yet implemented for {0}. If you would this to be implemented in the next version, please raise an issue at https://github.com/microsoft/dowhy/issues" BootstrapEstimates = namedtuple('BootstrapEstimates', ['estimates', 'params']) DEFAULT_INTERPRET_METHOD = ["textual_effect_interpreter"] def __init__(self, data, identified_estimand, treatment, outcome, control_value=0, treatment_value=1, test_significance=False, evaluate_effect_strength=False, confidence_intervals = False, target_units=None, effect_modifiers=None, params=None): """Initializes an estimator with data and names of relevant variables. This method is called from the constructors of its child classes. :param data: data frame containing the data :param identified_estimand: probability expression representing the target identified estimand to estimate. :param treatment: name of the treatment variable :param outcome: name of the outcome variable :param control_value: Value of the treatment in the control group, for effect estimation. If treatment is multi-variate, this can be a list. :param treatment_value: Value of the treatment in the treated group, for effect estimation. If treatment is multi-variate, this can be a list. :param test_significance: Binary flag or a string indicating whether to test significance and by which method. All estimators support test_significance="bootstrap" that estimates a p-value for the obtained estimate using the bootstrap method. Individual estimators can override this to support custom testing methods. The bootstrap method supports an optional parameter, num_null_simulations that can be specified through the params dictionary. If False, no testing is done. If True, significance of the estimate is tested using the custom method if available, otherwise by bootstrap. :param evaluate_effect_strength: (Experimental) whether to evaluate the strength of effect :param confidence_intervals: Binary flag or a string indicating whether the confidence intervals should be computed and which method should be used. All methods support estimation of confidence intervals using the bootstrap method by using the parameter confidence_intervals="bootstrap". The bootstrap method takes in two arguments (num_simulations and sample_size_fraction) that can be optionally specified in the params dictionary. Estimators may also override this to implement their own confidence interval method. If this parameter is False, no confidence intervals are computed. If True, confidence intervals are computed by the estimator's specific method if available, otherwise through bootstrap. :param target_units: The units for which the treatment effect should be estimated. This can be a string for common specifications of target units (namely, "ate", "att" and "atc"). It can also be a lambda function that can be used as an index for the data (pandas DataFrame). Alternatively, it can be a new DataFrame that contains values of the effect_modifiers and effect will be estimated only for this new data. :param effect_modifiers: Variables on which to compute separate effects, or return a heterogeneous effect function. Not all methods support this currently. :param params: (optional) Additional method parameters num_null_simulations: The number of simulations for testing the statistical significance of the estimator num_simulations: The number of simulations for finding the confidence interval (and/or standard error) for a estimate sample_size_fraction: The size of the sample for the bootstrap estimator confidence_level: The confidence level of the confidence interval estimate num_quantiles_to_discretize_cont_cols: The number of quantiles into which a numeric effect modifier is split, to enable estimation of conditional treatment effect over it. :returns: an instance of the estimator class. """ self._data = data self._target_estimand = identified_estimand # Currently estimation methods only support univariate treatment and outcome self._treatment_name = treatment self._outcome_name = outcome[0] # assuming one-dimensional outcome self._control_value = control_value self._treatment_value = treatment_value self._significance_test = test_significance self._effect_strength_eval = evaluate_effect_strength self._target_units = target_units self._effect_modifier_names = effect_modifiers self._confidence_intervals = confidence_intervals self._bootstrap_estimates = None # for confidence intervals and std error self._bootstrap_null_estimates = None # for significance test self._effect_modifiers = None self.method_params = params # Setting the default interpret method self.interpret_method = CausalEstimator.DEFAULT_INTERPRET_METHOD # Unpacking the keyword arguments if params is not None: for key, value in params.items(): setattr(self, key, value) self.logger = logging.getLogger(__name__) # Checking if some parameters were set, otherwise setting to default values if not hasattr(self, 'num_null_simulations'): self.num_null_simulations = CausalEstimator.DEFAULT_NUMBER_OF_SIMULATIONS_STAT_TEST if not hasattr(self, 'num_simulations'): self.num_simulations = CausalEstimator.DEFAULT_NUMBER_OF_SIMULATIONS_CI if not hasattr(self, 'sample_size_fraction'): self.sample_size_fraction = CausalEstimator.DEFAULT_SAMPLE_SIZE_FRACTION if not hasattr(self, 'confidence_level'): self.confidence_level = CausalEstimator.DEFAULT_CONFIDENCE_LEVEL if not hasattr(self, 'num_quantiles_to_discretize_cont_cols'): self.num_quantiles_to_discretize_cont_cols = CausalEstimator.NUM_QUANTILES_TO_DISCRETIZE_CONT_COLS # Estimate conditional estimates by default if not hasattr(self, 'need_conditional_estimates'): self.need_conditional_estimates = bool(self._effect_modifier_names) # Setting more values if self._data is not None: self._treatment = self._data[self._treatment_name] self._outcome = self._data[self._outcome_name] # Now saving the effect modifiers if self._effect_modifier_names: self._effect_modifiers = self._data[self._effect_modifier_names] self._effect_modifiers = pd.get_dummies(self._effect_modifiers, drop_first=True) self.logger.debug("Effect modifiers: " + ",".join(self._effect_modifier_names))
[docs] @staticmethod def get_estimator_object(new_data, identified_estimand, estimate): """ Create a new estimator of the same type as the one passed in the estimate argument. Creates a new object with new_data and the identified_estimand :param new_data: np.ndarray, pd.Series, pd.DataFrame The newly assigned data on which the estimator should run :param identified_estimand: IdentifiedEstimand An instance of the identified estimand class that provides the information with respect to which causal pathways are employed when the treatment effects the outcome :param estimate: CausalEstimate It is an already existing estimate whose properties we wish to replicate :returns: An instance of the same estimator class that had generated the given estimate. """ estimator_class = estimate.params['estimator_class'] new_estimator = estimator_class( new_data, identified_estimand, identified_estimand.treatment_variable, identified_estimand.outcome_variable, #names of treatment and outcome control_value=estimate.control_value, treatment_value=estimate.treatment_value, test_significance=False, evaluate_effect_strength=False, confidence_intervals = estimate.params["confidence_intervals"], target_units = estimate.params["target_units"], effect_modifiers = estimate.params["effect_modifiers"], params = estimate.params["method_params"] ) return new_estimator
def _estimate_effect(self): '''This method is to be overriden by the child classes, so that they can run the estimation technique of their choice ''' raise NotImplementedError(("Main estimation method is " + CausalEstimator.DEFAULT_NOTIMPLEMENTEDERROR_MSG).format(self.__class__))
[docs] def estimate_effect(self): """Base estimation method that calls the estimate_effect method of its calling subclass. Can optionally also test significance and estimate effect strength for any returned estimate. :param self: object instance of class Estimator :returns: A CausalEstimate instance that contains point estimates of average and conditional effects. Based on the parameters provided, it optionally includes confidence intervals, standard errors,statistical significance and other statistical parameters. """ est = self._estimate_effect() est.add_estimator(self) if self._significance_test: self.test_significance(est.value, method=self._significance_test) if self._confidence_intervals: self.estimate_confidence_intervals(method=self._confidence_intervals, confidence_level=self.confidence_level) if self._effect_strength_eval: effect_strength_dict = self.evaluate_effect_strength(est) est.add_effect_strength(effect_strength_dict) return est
[docs] def estimate_effect_naive(self): #TODO Only works for binary treatment df_withtreatment = self._data.loc[self._data[self._treatment_name] == 1] df_notreatment = self._data.loc[self._data[self._treatment_name]== 0] est = np.mean(df_withtreatment[self._outcome_name]) - np.mean(df_notreatment[self._outcome_name]) return CausalEstimate(est, None, None, control_value=0, treatment_value=1)
def _estimate_effect_fn(self, data_df): """Function used in conditional effect estimation. This function is to be overridden by each child estimator. The overridden function should take in a dataframe as input and return the estimate for that data. """ raise NotImplementedError(("Conditional treatment effects are " + CausalEstimator.DEFAULT_NOTIMPLEMENTEDERROR_MSG).format(self.__class__)) def _estimate_conditional_effects(self, estimate_effect_fn, effect_modifier_names=None, num_quantiles=None): """Estimate conditional treatment effects. Common method for all estimators that utilizes a specific estimate_effect_fn implemented by each child estimator. If a numeric effect modifier is provided, it is discretized into quantile bins. If you would like a custom discretization, you can do so yourself: create a new column containing the discretized effect modifier and then include that column's name in the effect_modifier_names argument. :param estimate_effect_fn: Function that has a single parameter (a data frame) and returns the treatment effect estimate on that data. :param effect_modifier_names: Names of effect modifier variables over which the conditional effects will be estimated. If not provided, defaults to the effect modifiers specified during creation of the CausalEstimator object. :param num_quantiles: The number of quantiles into which a numeric effect modifier variable is discretized. Does not affect any categorical effect modifiers. :returns: A (multi-index) dataframe that provides separate effects for each value of the (discretized) effect modifiers. """ # Defaulting to class default values if parameters are not provided if effect_modifier_names is None: effect_modifier_names = self._effect_modifier_names if num_quantiles is None: num_quantiles = self.num_quantiles_to_discretize_cont_cols # Checking that there is at least one effect modifier if not effect_modifier_names: raise ValueError("At least one effect modifier should be specified to compute conditional effects.") # Making sure that effect_modifier_names is a list effect_modifier_names = parse_state(effect_modifier_names) if not all(em in self._effect_modifier_names for em in effect_modifier_names): self.logger.warn("At least one of the provided effect modifiers was not included while fitting the estimator. You may get incorrect results. To resolve, fit the estimator again by providing the updated effect modifiers in estimate_effect().") # Making a copy since we are going to be changing effect modifier names effect_modifier_names = effect_modifier_names.copy() prefix = CausalEstimator.TEMP_CAT_COLUMN_PREFIX # For every numeric effect modifier, adding a temp categorical column for i in range(len(effect_modifier_names)): em = effect_modifier_names[i] if pd.api.types.is_numeric_dtype(self._data[em].dtypes): self._data[prefix+str(em)] = pd.qcut(self._data[em], num_quantiles, duplicates="drop") effect_modifier_names[i] = prefix + str(em) # Grouping by effect modifiers and computing effect separately by_effect_mods = self._data.groupby(effect_modifier_names) cond_est_fn = lambda x: self._do(self._treatment_value, x) -self._do(self._control_value, x) conditional_estimates = by_effect_mods.apply(estimate_effect_fn) # Deleting the temporary categorical columns for em in effect_modifier_names: if em.startswith(prefix): self._data.pop(em) return conditional_estimates def _do(self, x, data_df=None): raise NotImplementedError(("Do-operator is " + CausalEstimator.DEFAULT_NOTIMPLEMENTEDERROR_MSG).format(self.__class__))
[docs] def do(self, x, data_df=None): """Method that implements the do-operator. Given a value x for the treatment, returns the expected value of the outcome when the treatment is intervened to a value x. :param x: Value of the treatment :param data_df: Data on which the do-operator is to be applied. :returns: Value of the outcome when treatment is intervened/set to x. """ est = self._do(x, data_df) return est
[docs] def construct_symbolic_estimator(self, estimand): raise NotImplementedError(("Symbolic estimator string is ").format(self.__class__))
def _generate_bootstrap_estimates(self, num_bootstrap_simulations, sample_size_fraction): """ Helper function to generate causal estimates over bootstrapped samples. :param num_bootstrap_simulations: Number of simulations for the bootstrap method. :param sample_size_fraction: Fraction of the dataset to be resampled. :returns: A collections.namedtuple containing a list of bootstrapped estimates and a dictionary containing parameters used for the bootstrap. """ # The array that stores the results of all estimations simulation_results = np.zeros(num_bootstrap_simulations) # Find the sample size the proportion with the population size sample_size= int( sample_size_fraction * len(self._data) ) if sample_size > len(self._data): self.logger.warning("WARN: The sample size is greater than the data being sampled") self.logger.info("INFO: The sample size: {}".format(sample_size) ) self.logger.info("INFO: The number of simulations: {}".format(num_bootstrap_simulations) ) # Perform the set number of simulations for index in range(num_bootstrap_simulations): new_data = resample(self._data,n_samples=sample_size) new_estimator = type(self)( new_data, self._target_estimand, self._target_estimand.treatment_variable, self._target_estimand.outcome_variable, #names of treatment and outcome test_significance=False, evaluate_effect_strength=False, confidence_intervals = False, target_units = self._target_units, effect_modifiers = self._effect_modifier_names, params = self.method_params ) new_effect = new_estimator.estimate_effect() simulation_results[index] = new_effect.value estimates = CausalEstimator.BootstrapEstimates(simulation_results, {'num_simulations': num_bootstrap_simulations, 'sample_size_fraction': sample_size_fraction}) return estimates def _estimate_confidence_intervals_with_bootstrap(self, confidence_level=None, num_simulations=None, sample_size_fraction=None): ''' Method to compute confidence interval using bootstrapped sampling. :param confidence_level: The level for which to compute CI (e.g., 95% confidence level translates to confidence_level=0.95) :param num_simulations: The number of simulations to be performed to get the bootstrap confidence intervals. :param sample_size_fraction: The fraction of the dataset to be resampled. :returns: confidence interval at the specified level. For more details on bootstrap or resampling statistics, refer to the following links: https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading24.pdf https://projecteuclid.org/download/pdf_1/euclid.ss/1032280214 ''' # Using class default parameters if not specified if num_simulations is None: num_simulations = self.num_simulations if sample_size_fraction is None: sample_size_fraction = self.sample_size_fraction # Checking if bootstrap_estimates are already computed if self._bootstrap_estimates is None: self._bootstrap_estimates = self._generate_bootstrap_estimates( num_simulations, sample_size_fraction) elif CausalEstimator.is_bootstrap_parameter_changed(self._bootstrap_estimates.params, locals()): # Checked if any parameter is changed from the previous std error estimate self._bootstrap_estimates = self._generate_bootstrap_estimates( num_simulations, sample_size_fraction) # Now use the data obtained from the simulations to get the value of the confidence estimates # Sort the simulations bootstrap_estimates = np.sort(self._bootstrap_estimates.estimates) # Now we take the (1- p)th and the (p)th values, where p is the chosen confidence level lower_bound_index = int( ( 1 - confidence_level ) * len(bootstrap_estimates) ) upper_bound_index = int( confidence_level * len(bootstrap_estimates) ) # get the values lower_bound = bootstrap_estimates[lower_bound_index] upper_bound = bootstrap_estimates[upper_bound_index] return (lower_bound, upper_bound) def _estimate_confidence_intervals(self, confidence_level, method=None, **kwargs): ''' This method is to be overriden by the child classes, so that they can run a confidence interval estimation method suited to the specific causal estimator. ''' raise NotImplementedError(("This method for estimating confidence intervals is " + CausalEstimator.DEFAULT_NOTIMPLEMENTEDERROR_MSG + " Meanwhile, you can try the bootstrap method (method='bootstrap') to estimate confidence intervals.").format(self.__class__))
[docs] def estimate_confidence_intervals(self, confidence_level=None, method=None, **kwargs): ''' Find the confidence intervals corresponding to any estimator By default, this is done with the help of bootstrapped confidence intervals but can be overridden if the specific estimator implements other methods of estimating confidence intervals. If the method provided is not bootstrap, this function calls the implementation of the specific estimator. :param method: Method for estimating confidence intervals. :param confidence_level: The confidence level of the confidence intervals of the estimate. :param kwargs: Other optional args to be passed to the CI method. :returns: The obtained confidence interval. ''' if method is None: if self._confidence_intervals: method = self._confidence_intervals # this is either True or methodname else: method = "default" confidence_intervals = None if confidence_level is None: confidence_level = self.confidence_level if method == "default" or method is True: # user has not provided any method try: confidence_intervals = self._estimate_confidence_intervals( confidence_level, method=method, **kwargs) except NotImplementedError: confidence_intervals = self._estimate_confidence_intervals_with_bootstrap( confidence_level, **kwargs) else: if method == "bootstrap": confidence_intervals = self._estimate_confidence_intervals_with_bootstrap( confidence_level, **kwargs) else: confidence_intervals = self._estimate_confidence_intervals( confidence_level, method=method, **kwargs) return confidence_intervals
def _estimate_std_error_with_bootstrap(self, num_simulations=None, sample_size_fraction=None): """ Compute standard error using the bootstrap method. Standard error and confidence intervals use the same parameter num_simulations for the number of bootstrap simulations. :param num_simulations: Number of bootstrapped samples. :param sample_size_fraction: Fraction of data to be resampled. :returns: Standard error of the obtained estimate. """ # Use existing params, if new user defined params are not present if num_simulations is None: num_simulations = self.num_simulations if sample_size_fraction is None: sample_size_fraction = self.sample_size_fraction # Checking if bootstrap_estimates are already computed if self._bootstrap_estimates is None: self._bootstrap_estimates = self._generate_bootstrap_estimates( num_simulations, sample_size_fraction) elif CausalEstimator.is_bootstrap_parameter_changed(self._bootstrap_estimates.params, locals()): # Check if any parameter is changed from the previous std error estimate self._bootstrap_estimates = self._generate_bootstrap_estimates( num_simulations, sample_size_fraction) std_error = np.std(self._bootstrap_estimates.estimates) return std_error def _estimate_std_error(self, method=None, **kwargs): ''' This method is to be overriden by the child classes, so that they can run a standard error estimation method suited to the specific causal estimator. ''' raise NotImplementedError(("This method for estimating standard errors is " + CausalEstimator.DEFAULT_NOTIMPLEMENTEDERROR_MSG + " Meanwhile, you can try the bootstrap method (method='bootstrap') to estimate standard errors.").format(self.__class__))
[docs] def estimate_std_error(self, method=None, **kwargs): """ Compute standard error of an obtained causal estimate. :param method: Method for computing the standard error. :param kwargs: Other optional parameters to be passed to the estimating method. :returns: Standard error of the causal estimate. """ if method is None: if self._confidence_intervals: method = self._confidence_intervals else: method = "default" std_error = None if method == "default" or method is True: # user has not provided any method try: std_error = self._estimate_std_error(method, **kwargs) except NotImplementedError: std_error = self._estimate_std_error_with_bootstrap(**kwargs) else: if method == "bootstrap": std_error = self._estimate_std_error_with_bootstrap(**kwargs) else: std_error = self._estimate_std_error(method, **kwargs) return std_error
def _test_significance_with_bootstrap(self, estimate_value, num_null_simulations=None): """ Test statistical significance of an estimate using the bootstrap method. :param estimate_value: Obtained estimate's value :param num_null_simulations: Number of simulations for the null hypothesis :returns: p-value of the statistical significance test. """ # Use existing params, if new user defined params are not present if num_null_simulations is None: num_null_simulations = self.num_null_simulations do_retest = self._bootstrap_null_estimates is None or CausalEstimator.is_bootstrap_parameter_changed(self._bootstrap_null_estimates.params, locals()) if do_retest: null_estimates = np.zeros(num_null_simulations) for i in range(num_null_simulations): new_outcome = np.random.permutation(self._outcome) new_data = self._data.assign(dummy_outcome=new_outcome) #self._outcome = self._data["dummy_outcome"] new_estimator = type(self)( new_data, self._target_estimand, self._target_estimand.treatment_variable, ("dummy_outcome",), test_significance=False, evaluate_effect_strength=False, confidence_intervals = False, target_units = self._target_units, effect_modifiers = self._effect_modifier_names, params = self.method_params ) new_effect = new_estimator.estimate_effect() null_estimates[i] = new_effect.value self._bootstrap_null_estimates = CausalEstimator.BootstrapEstimates( null_estimates, {'num_null_simulations': num_null_simulations, 'sample_size_fraction': 1}) # Processing the null hypothesis estimates sorted_null_estimates = np.sort(self._bootstrap_null_estimates.estimates) self.logger.debug("Null estimates: {0}".format(sorted_null_estimates)) median_estimate = sorted_null_estimates[int(num_null_simulations / 2)] # Doing a two-sided test if estimate_value > median_estimate: # Being conservative with the p-value reported estimate_index = np.searchsorted(sorted_null_estimates, estimate_value, side="left") p_value = 1 - (estimate_index / num_null_simulations) if estimate_value <= median_estimate: # Being conservative with the p-value reported estimate_index = np.searchsorted(sorted_null_estimates, estimate_value, side="right") p_value = (estimate_index / num_null_simulations) # If the estimate_index is 0, it depends on the number of simulations if p_value == 0: p_value = (0, 1/len(sorted_null_estimates)) # a tuple determining the range. elif p_value == 1: p_value = (1 -1/len(sorted_null_estimates), 1) signif_dict = { 'p_value': p_value } return signif_dict def _test_significance(self, estimate_value, method=None, **kwargs): ''' This method is to be overriden by the child classes, so that they can run a significance test suited to the specific causal estimator. ''' raise NotImplementedError(("This method for testing statistical significance is " + CausalEstimator.DEFAULT_NOTIMPLEMENTEDERROR_MSG + " Meanwhile, you can try the bootstrap method (method='bootstrap') to test statistical significance.").format(self.__class__))
[docs] def test_significance(self, estimate_value, method=None, **kwargs): """Test statistical significance of obtained estimate. By default, uses resampling to create a non-parametric significance test. A general procedure. Individual child estimators can implement different methods. If the method name is different from "bootstrap", this function calls the implementation of the child estimator. :param self: object instance of class Estimator :param estimate_value: obtained estimate's value :param method: Method for checking statistical significance :returns: p-value from the significance test """ if method is None: if self._significance_test: method = self._significance_test # this is either True or methodname else: method = "default" signif_dict = None if method == "default" or method is True: # user has not provided any method try: signif_dict = self._test_significance(estimate_value, method, **kwargs) except NotImplementedError: signif_dict = self._test_significance_with_bootstrap(estimate_value, **kwargs) else: if method == "bootstrap": signif_dict = self._test_significance_with_bootstrap(estimate_value, **kwargs) else: signif_dict = self._test_significance(estimate_value, method, **kwargs) return signif_dict
[docs] def evaluate_effect_strength(self, estimate): fraction_effect_explained = self._evaluate_effect_strength(estimate, method="fraction-effect") # Need to test r-squared before supporting #effect_r_squared = self._evaluate_effect_strength(estimate, method="r-squared") strength_dict = { 'fraction-effect': fraction_effect_explained # 'r-squared': effect_r_squared } return strength_dict
def _evaluate_effect_strength(self, estimate, method="fraction-effect"): supported_methods = ["fraction-effect"] if method not in supported_methods: raise NotImplementedError("This method is not supported for evaluating effect strength") if method == "fraction-effect": naive_obs_estimate = self.estimate_effect_naive() print(estimate.value, naive_obs_estimate.value) fraction_effect_explained = estimate.value/naive_obs_estimate.value return fraction_effect_explained #elif method == "r-squared": # outcome_mean = np.mean(self._outcome) # total_variance = np.sum(np.square(self._outcome - outcome_mean)) # Assuming a linear model with one variable: the treatment # Currently only works for continuous y # causal_model = outcome_mean + estimate.value*self._treatment # squared_residual = np.sum(np.square(self._outcome - causal_model)) # r_squared = 1 - (squared_residual/total_variance) # return r_squared else: return None
[docs] @staticmethod def is_bootstrap_parameter_changed(bootstrap_estimates_params, given_params): """ Check whether parameters of the bootstrap have changed. This is an efficiency method that checks if fresh resampling of the bootstrap samples is required. Returns True if parameters have changed and resampling should be done again. :param bootstrap_estimates_params: A dictionary of parameters for the current bootstrap samples :param given_params: A dictionary of parameters passed by the user :returns: A binary flag denoting whether the parameters are different. """ is_any_parameter_changed = False for prm, val in bootstrap_estimates_params.items(): given_val = given_params.get(prm, None) if given_val is not None and given_val != val: is_any_parameter_changed = True break return is_any_parameter_changed
[docs] def target_units_tostr(self): s = "" if type(self._target_units) is str: s += self._target_units elif callable(self._target_units): s += "Data subset defined by a function" elif isinstance(self._target_units, pd.DataFrame): s += "Data subset provided as a data frame" return s
[docs] def signif_results_tostr(self, signif_results): s = "" pval = signif_results["p_value"] if type(pval) is tuple: s += "[{0}, {1}]".format(pval[0], pval[1]) else: s+= "{0}".format(pval) return s
[docs]class CausalEstimate: """Class for the estimate object that every causal estimator returns """ def __init__(self, estimate, target_estimand, realized_estimand_expr, control_value, treatment_value, conditional_estimates = None, **kwargs): self.value = estimate self.target_estimand = target_estimand self.realized_estimand_expr = realized_estimand_expr self.control_value = control_value self.treatment_value = treatment_value self.conditional_estimates = conditional_estimates self.params = kwargs if self.params is not None: for key, value in self.params.items(): setattr(self, key, value) self.effect_strength = None
[docs] def add_estimator(self, estimator_instance): self.estimator = estimator_instance
[docs] def add_effect_strength(self, strength_dict): self.effect_strength = strength_dict
[docs] def add_params(self, **kwargs): self.params.update(kwargs)
[docs] def get_confidence_intervals(self, confidence_level=None, method=None, **kwargs): """ Get confidence intervals of the obtained estimate. By default, this is done with the help of bootstrapped confidence intervals but can be overridden if the specific estimator implements other methods of estimating confidence intervals. If the method provided is not bootstrap, this function calls the implementation of the specific estimator. :param method: Method for estimating confidence intervals. :param confidence_level: The confidence level of the confidence intervals of the estimate. :param kwargs: Other optional args to be passed to the CI method. :returns: The obtained confidence interval. """ confidence_intervals = self.estimator.estimate_confidence_intervals( confidence_level=confidence_level, method=method, **kwargs) return confidence_intervals
[docs] def get_standard_error(self, method=None, **kwargs): """ Get standard error of the obtained estimate. By default, this is done with the help of bootstrapped standard errors but can be overridden if the specific estimator implements other methods of estimating standard error. If the method provided is not bootstrap, this function calls the implementation of the specific estimator. :param method: Method for computing the standard error. :param kwargs: Other optional parameters to be passed to the estimating method. :returns: Standard error of the causal estimate. """ std_error = self.estimator.estimate_std_error(method=method, **kwargs) return std_error
[docs] def test_stat_significance(self, method=None, **kwargs): """ Test statistical significance of the estimate obtained. By default, uses resampling to create a non-parametric significance test. Individual child estimators can implement different methods. If the method name is different from "bootstrap", this function calls the implementation of the child estimator. :param method: Method for checking statistical significance :param kwargs: Other optional parameters to be passed to the estimating method. :returns: p-value from the significance test """ signif_results = self.estimator.test_significance(self.value, method=method, **kwargs) return {'p_value': signif_results["p_value"]}
[docs] def estimate_conditional_effects(self, effect_modifiers=None, num_quantiles=CausalEstimator.NUM_QUANTILES_TO_DISCRETIZE_CONT_COLS): """Estimate treatment effect conditioned on given variables. If a numeric effect modifier is provided, it is discretized into quantile bins. If you would like a custom discretization, you can do so yourself: create a new column containing the discretized effect modifier and then include that column's name in the effect_modifier_names argument. :param effect_modifiers: Names of effect modifier variables over which the conditional effects will be estimated. If not provided, defaults to the effect modifiers specified during creation of the CausalEstimator object. :param num_quantiles: The number of quantiles into which a numeric effect modifier variable is discretized. Does not affect any categorical effect modifiers. :returns: A (multi-index) dataframe that provides separate effects for each value of the (discretized) effect modifiers. """ return self.estimator._estimate_conditional_effects( self.estimator._estimate_effect_fn, effect_modifiers, num_quantiles)
[docs] def interpret(self, method_name=None, **kwargs): """Interpret the causal estimate. :param method_name: Method used (string) or a list of methods. If None, then the default for the specific estimator is used. :param kwargs:: Optional parameters that are directly passed to the interpreter method. :returns: None """ if method_name is None: method_name = self.estimator.interpret_method method_name_arr = parse_state(method_name) for method in method_name_arr: interpreter = interpreters.get_class_object(method) interpreter(self, **kwargs).interpret()
def __str__(self): s = "*** Causal Estimate ***\n" s += "\n## Identified estimand\n{0}".format(self.target_estimand.__str__(only_target_estimand=True)) s += "\n## Realized estimand\n{0}".format(self.realized_estimand_expr) s += "\nTarget units: {0}\n".format(self.estimator.target_units_tostr()) s += "\n## Estimate\n" s += "Mean value: {0}\n".format(self.value) s += "" if hasattr(self, "cate_estimates"): s += "Effect estimates: {0}\n".format(self.cate_estimates) if self.estimator._significance_test: s += "p-value: {0}\n".format(self.estimator.signif_results_tostr(self.test_stat_significance())) if self.estimator._confidence_intervals: s += "{0}% confidence interval: {1}\n".format(100 * self.estimator.confidence_level, self.get_confidence_intervals()) if self.conditional_estimates is not None: s += "### Conditional Estimates\n" s += str(self.conditional_estimates) if self.effect_strength is not None: s += "\n## Effect Strength\n" s += "Change in outcome attributable to treatment: {}\n".format(self.effect_strength["fraction-effect"]) #s += "Variance in outcome explained by treatment: {}\n".format(self.effect_strength["r-squared"]) return s
[docs]class RealizedEstimand(object): def __init__(self, identified_estimand, estimator_name): self.treatment_variable = identified_estimand.treatment_variable self.outcome_variable = identified_estimand.outcome_variable self.backdoor_variables = identified_estimand.get_backdoor_variables() self.instrumental_variables = identified_estimand.instrumental_variables self.estimand_type = identified_estimand.estimand_type self.estimand_expression = None self.assumptions = None self.estimator_name = estimator_name
[docs] def update_assumptions(self, estimator_assumptions): self.assumptions = estimator_assumptions
[docs] def update_estimand_expression(self, estimand_expression): self.estimand_expression = estimand_expression
def __str__(self): s = "Realized estimand: {0}\n".format(self.estimator_name) s += "Realized estimand type: {0}\n".format(self.estimand_type) s += "Estimand expression:\n{0}\n".format(sp.pretty(self.estimand_expression)) j = 1 for ass_name, ass_str in self.assumptions.items(): s += "Estimand assumption {0}, {1}: {2}\n".format(j, ass_name, ass_str) j += 1 return s