dowhy.gcm.ml package#
Submodules#
dowhy.gcm.ml.autogluon module#
dowhy.gcm.ml.classification module#
- class dowhy.gcm.ml.classification.ClassificationModel[source]#
Bases:
PredictionModel- abstract property classes: List[str]#
- class dowhy.gcm.ml.classification.SklearnClassificationModel(sklearn_mdl: Any)[source]#
Bases:
SklearnRegressionModel,ClassificationModel- property classes: List[str]#
- class dowhy.gcm.ml.classification.SklearnClassificationModelWeighted(sklearn_mdl: Any)[source]#
Bases:
SklearnRegressionModelWeighted,ClassificationModel- property classes: List[str]#
- dowhy.gcm.ml.classification.create_ada_boost_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_decision_tree_classifier() SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_extra_trees_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_gaussian_nb_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_gaussian_process_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_hist_gradient_boost_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_knn_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_logistic_regression_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_polynom_logistic_regression_classifier(degree: int = 3, **kwargs_logistic_regression) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_random_forest_classifier(**kwargs) SklearnClassificationModel[source]#
- dowhy.gcm.ml.classification.create_support_vector_classifier(**kwargs) SklearnClassificationModel[source]#
dowhy.gcm.ml.prediction_model module#
- class dowhy.gcm.ml.prediction_model.PredictionModel[source]#
Bases:
objectRepresents general prediction model implementations. Each prediction model should provide a fit and a predict method.
dowhy.gcm.ml.regression module#
- class dowhy.gcm.ml.regression.InvertibleExponentialFunction[source]#
Bases:
InvertibleFunction
- class dowhy.gcm.ml.regression.InvertibleIdentityFunction[source]#
Bases:
InvertibleFunction
- class dowhy.gcm.ml.regression.InvertibleLogarithmicFunction[source]#
Bases:
InvertibleFunction
- class dowhy.gcm.ml.regression.LinearRegressionWithFixedParameter(coefficients: ndarray, intercept: float)[source]#
Bases:
PredictionModel
- class dowhy.gcm.ml.regression.SklearnRegressionModel(sklearn_mdl: Any)[source]#
Bases:
PredictionModelGeneral wrapper class for sklearn models.
- clone()[source]#
Clones the prediction model using the same hyper parameters but not fitted. :return: An unfitted clone of the prediction model.
- property sklearn_model: Any#
- class dowhy.gcm.ml.regression.SklearnRegressionModelWeighted(sklearn_mdl: Any)[source]#
Bases:
SklearnRegressionModel
- dowhy.gcm.ml.regression.create_ada_boost_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_elastic_net_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_extra_trees_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_gaussian_process_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_hist_gradient_boost_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_knn_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_lasso_lars_ic_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_lasso_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_linear_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_linear_regressor_with_given_parameters(coefficients: ndarray, intercept: float = 0) LinearRegressionWithFixedParameter[source]#
- dowhy.gcm.ml.regression.create_polynom_regressor(degree: int = 2, **kwargs_linear_model) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_random_forest_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_ridge_regressor(**kwargs) SklearnRegressionModel[source]#
- dowhy.gcm.ml.regression.create_support_vector_regressor(**kwargs) SklearnRegressionModel[source]#
Module contents#
This module defines implementations of PredictionModel used by the different
FunctionalCausalModel implementations, such as PostNonlinearModel or
AdditiveNoiseModel.