import logging
import numpy as np
import scipy.stats as st
import random
[docs]class CausalRefuter:
"""Base class for different refutation methods.
Subclasses implement specific refutations methods.
"""
# Default value for the number of simulations to be conducted
DEFAULT_NUM_SIMULATIONS = 100
def __init__(self, data, identified_estimand, estimate, **kwargs):
self._data = data
self._target_estimand = identified_estimand
self._estimate = estimate
self._treatment_name = self._target_estimand.treatment_variable
self._outcome_name = self._target_estimand.outcome_variable
self._random_seed = None
if "random_seed" in kwargs:
self._random_seed = kwargs['random_seed']
np.random.seed(self._random_seed)
if 'logging_level' in kwargs:
logging.basicConfig(level=kwargs['logging_level'])
else:
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
# Concatenate the confounders, instruments and effect modifiers
try:
self._variables_of_interest = self._target_estimand.backdoor_variables + \
self._target_estimand.instrumental_variables + \
self._estimate.params['effect_modifiers']
except AttributeError as attr_error:
self.logger.error(attr_error)
[docs] def choose_variables(self, required_variables):
'''
This method provides a way to choose the confounders whose values we wish to
modify for finding its effect on the ability of the treatment to affect the outcome.
'''
invert = None
if required_variables is False:
self.logger.info("All variables required: Running bootstrap adding noise to confounders, instrumental variables and effect modifiers.")
return None
elif required_variables is True:
self.logger.info("All variables required: Running bootstrap adding noise to confounders, instrumental variables and effect modifiers.")
return self._variables_of_interest
elif type(required_variables) is int:
if len(self._variables_of_interest) < required_variables:
self.logger.error("Too many variables passed.\n The number of variables is: {}.\n The number of variables passed: {}".format(
len(self._variables_of_interest),
required_variables )
)
raise ValueError("The number of variables in the required_variables is greater than the number of confounders, instrumental variables and effect modifiers")
else:
# Shuffle the confounders
random.shuffle(self._variables_of_interest)
return self._variables_of_interest[:required_variables]
elif type(required_variables) is list:
# Check if all are select or deselect variables
if all(variable[0] == '-' for variable in required_variables):
invert = True
required_variables = [variable[1:] for variable in required_variables]
elif all(variable[0] != '-' for variable in required_variables):
invert = False
else:
self.logger.error("{} has both select and delect variables".format(required_variables))
raise ValueError("It appears that there are some select and deselect variables. Note you can either select or delect variables at a time, but not both")
# Check if all the required_variables belong to confounders, instrumental variables or effect
if set(required_variables) - set(self._variables_of_interest) != set([]):
self.logger.error("{} are not confounder, instrumental variable or effect modifier".format( list( set(required_variables) - set(self._variables_of_interest) ) ))
raise ValueError("At least one of required_variables is not a valid variable name, or it is not a confounder, instrumental variable or effect modifier")
if invert is False:
return required_variables
elif invert is True:
return list( set(self._variables_of_interest) - set(required_variables) )
else:
self.logger.error("Incorrect type: {}. Expected an int,list or bool".format( type(required_variables) ) )
raise TypeError("Expected int, list or bool. Got an unexpected datatype")
[docs] def test_significance(self, estimate, simulations, test_type='auto',significance_level=0.05):
"""
Tests the statistical significance of the estimate obtained to the simulations produced by a refuter
The basis behind using the sample statistics of the refuter when we are in fact testing the estimate,
is due to the fact that, we would ideally expect them to follow the same distribition
For refutation tests (e.g., placebo refuters), consider the null distribution as a distribution of effect
estimates over multiple simulations with placebo treatment, and compute how likely the true estimate (e.g.,
zero for placebo test) is under the null. If the probability of true effect estimate is lower than the
p-value, then estimator method fails the test.
For sensitivity analysis tests (e.g., bootstrap, subset or common cause refuters), the null distribution captures
the distribution of effect estimates under the "true" dataset (e.g., with an additional confounder or different
sampling), and we compute the probability of the obtained estimate under this distribution. If the probability is
lower than the p-value, then the estimator method fails the test
Null Hypothesis: The estimate is a part of the distribution
Alternative Hypothesis: The estimate does not fall in the distribution.
Parameters
-----------
'estimate': CausalEstimate
The estimate obtained from the estimator for the original data.
'simulations': np.array
An array containing the result of the refuter for the simulations
'test_type': string, default 'auto'
The type of test the user wishes to perform.
'significance_level': float, default 0.05
The significance level for the statistical test
Returns
--------
significance_dict: Dict
A Dict containing the p_value and a boolean that indicates if the result is statistically significant
"""
# Initializing the p_value
p_value = 0
if test_type == 'auto':
num_simulations = len(simulations)
if num_simulations >= 100: # Bootstrapping
self.logger.info("Making use of Bootstrap as we have more than 100 examples.\n \
Note: The greater the number of examples, the more accurate are the confidence estimates")
# Perform Bootstrap Significance Test with the original estimate and the set of refutations
p_value = self.perform_bootstrap_test(estimate, simulations)
else:
self.logger.warning("We assume a Normal Distribution as the sample has less than 100 examples.\n \
Note: The underlying distribution may not be Normal. We assume that it approaches normal with the increase in sample size.")
# Perform Normal Tests of Significance with the original estimate and the set of refutations
p_value = self.perform_normal_distribution_test(estimate, simulations)
elif test_type == 'bootstrap':
self.logger.info("Performing Bootstrap Test with {} samples\n \
Note: The greater the number of examples, the more accurate are the confidence estimates".format( len(simulations) ) )
# Perform Bootstrap Significance Test with the original estimate and the set of refutations
p_value = self.perform_bootstrap_test(estimate, simulations)
elif test_type == 'normal_test':
self.logger.info("Performing Normal Test with {} samples\n \
Note: We assume that the underlying distribution is Normal.".format( len(simulations) ) )
# Perform Normal Tests of Significance with the original estimate and the set of refutations
p_value = self.perform_normal_distribution_test(estimate, simulations)
else:
raise NotImplementedError
significance_dict = {
"p_value":p_value,
"is_statistically_significant": p_value <= significance_level
}
return significance_dict
[docs] def refute_estimate(self):
raise NotImplementedError
[docs]class CausalRefutation:
"""Class for storing the result of a refutation method.
"""
def __init__(self, estimated_effect, new_effect, refutation_type):
self.estimated_effect = estimated_effect
self.new_effect = new_effect
self.refutation_type = refutation_type
self.refutation_result = None
def __str__(self):
if self.refutation_result is None:
return "{0}\nEstimated effect:{1}\nNew effect:{2}\n".format(
self.refutation_type, self.estimated_effect, self.new_effect
)
else:
return "{0}\nEstimated effect:{1}\nNew effect:{2}\np value:{3}\n".format(
self.refutation_type, self.estimated_effect, self.new_effect, self.refutation_result['p_value']
)
[docs] def add_significance_test_results(self, refutation_result):
self.refutation_result = refutation_result