from sklearn import linear_model
from sklearn.neighbors import NearestNeighbors
import pandas as pd
from dowhy.causal_estimator import CausalEstimate
from dowhy.causal_estimators.propensity_score_estimator import PropensityScoreEstimator
[docs]class PropensityScoreMatchingEstimator(PropensityScoreEstimator):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.logger.info("INFO: Using Propensity Score Matching Estimator")
self.symbolic_estimator = self.construct_symbolic_estimator(self._target_estimand)
self.logger.info(self.symbolic_estimator)
def _estimate_effect(self, recalculate_propensity_score=False):
if self._propensity_score_model is None or recalculate_propensity_score is True:
self._propensity_score_model = linear_model.LogisticRegression(solver="lbfgs")
self._propensity_score_model.fit(self._observed_common_causes, self._treatment.to_numpy())
self._data['propensity_score'] = self._propensity_score_model.predict_proba(self._observed_common_causes)[:,1]
# this assumes a binary treatment regime
treated = self._data.loc[self._data[self._treatment_name[0]] == 1]
control = self._data.loc[self._data[self._treatment_name[0]] == 0]
# TODO remove neighbors that are more than a given radius apart
# estimate ATT on treated by summing over difference between matched neighbors
control_neighbors = (
NearestNeighbors(n_neighbors=1, algorithm='ball_tree')
.fit(control['propensity_score'].values.reshape(-1, 1))
)
distances, indices = control_neighbors.kneighbors(treated['propensity_score'].values.reshape(-1, 1))
self.logger.debug("distances:")
self.logger.debug(distances)
att = 0
numtreatedunits = treated.shape[0]
for i in range(numtreatedunits):
treated_outcome = treated.iloc[i][self._outcome_name].item()
control_outcome = control.iloc[indices[i]][self._outcome_name].item()
att += treated_outcome - control_outcome
att /= numtreatedunits
#Now computing ATC
treated_neighbors = (
NearestNeighbors(n_neighbors=1, algorithm='ball_tree')
.fit(treated['propensity_score'].values.reshape(-1, 1))
)
distances, indices = treated_neighbors.kneighbors(control['propensity_score'].values.reshape(-1, 1))
atc = 0
numcontrolunits = control.shape[0]
for i in range(numcontrolunits):
control_outcome = control.iloc[i][self._outcome_name].item()
treated_outcome = treated.iloc[indices[i]][self._outcome_name].item()
atc += treated_outcome - control_outcome
atc /= numcontrolunits
if self._target_units == "att":
est = att
elif self._target_units == "atc":
est = atc
elif self._target_units == "ate":
est = (att*numtreatedunits + atc*numcontrolunits)/(numtreatedunits+numcontrolunits)
else:
raise ValueError("Target units string value not supported")
estimate = CausalEstimate(estimate=est,
target_estimand=self._target_estimand,
realized_estimand_expr=self.symbolic_estimator,
propensity_scores=self._data["propensity_score"])
return estimate
[docs] def construct_symbolic_estimator(self, estimand):
expr = "b: " + ", ".join(estimand.outcome_variable) + "~"
# TODO -- fix: we are actually conditioning on positive treatment (d=1)
var_list = estimand.treatment_variable + estimand.backdoor_variables
expr += "+".join(var_list)
return expr