References
V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv e-prints, July 2016.
V. Chernozhukov, M. Goldman, V. Semenova, and M. Taddy. Orthogonal Machine Learning for Demand Estimation: High Dimensional Causal Inference in Dynamic Panels. ArXiv e-prints, December 2017.
V. Chernozhukov, D. Nekipelov, V. Semenova, and V. Syrgkanis. Two-Stage Estimation with a High-Dimensional Second Stage. 2018.
V. Chernozhukov, C. Cinelli, N. Kallus, W. Newey, A. Sharma, and V. Syrgkanis. Long Story Short: Omitted Variable Bias in Causal Machine Learning. NBER Working Paper No. 30302, 2022. URL https://www.nber.org/papers/w30302.
Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, 2017.
Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized problems. Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 471–478, 2010.
Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Meta-learners for estimating heterogeneous treatment effects using machine learning. arXiv preprint arXiv:1706.03461, 2017. URL http://arxiv.org/abs/1706.03461.
Lester W. Mackey, Vasilis Syrgkanis, and Ilias Zadik. Orthogonal machine learning: Power and limitations. CoRR, abs/1711.00342, 2017. URL http://arxiv.org/abs/1711.00342.
W. K. Newey and J. L. Powell. Instrumental variable estimation of nonparametric models. Econometrica, 71 (5): 1565–1578, 2003.
D. Foster and V. Syrgkanis. Orthogonal Statistical Learning. arXiv preprint arXiv:1901.09036, 2019. URL http://arxiv.org/abs/1901.09036.
S. Wager and S. Athey. Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), pp.1228-1242, 2018.
S. Athey, J. Tibshirani and S. Wager. Generalized Random Forests. Annals of Statistics, 2019
M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning, 2019. URL http://proceedings.mlr.press/v97/oprescu19a.html.
X. Nie and S. Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. arXiv preprint arXiv:1712.04912, 2017. URL http://arxiv.org/abs/1712.04912.
P. Bühlmann and S. van de Geer Statistics for High-Dimensional Data Springer Series in Statistics, 2011 URL https://www.springer.com/gp/book/9783642201912
Robins, J.M., Rotnitzky, A., and Zhao, L.P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association 89,846–866.
Bang, H. and Robins, J.M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61,962–972.
Tsiatis AA (2006). Semiparametric Theory and Missing Data. New York: Springer; 2006.
Dudík, M., Erhan, D., Langford, J., & Li, L. (2014). Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511.
Athey, S., & Wager, S. (2017). Efficient policy learning. arXiv preprint arXiv:1702.02896.
Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2018). Local linear forests. arXiv preprint arXiv:1807.11408.
Lundberg, S., Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. URL https://arxiv.org/abs/1705.07874
Lewis, G., Syrgkanis, V. (2021). Double/Debiased Machine Learning for Dynamic Treatment Effects. URL https://arxiv.org/abs/2002.07285
Hernán, Miguel A., and James M. Robins (2010). Causal inference. URL https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
Syrgkanis, V., Lei, V., Oprescu, M., Hei, M., Battocchi, K., Lewis, G. (2019) Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments URL https://arxiv.org/abs/1905.10176