econml.inference.GenericSingleTreatmentModelFinalInference
- class econml.inference.GenericSingleTreatmentModelFinalInference[source]
Bases:
GenericModelFinalInferenceInference based on predict_interval of the model_final model.
Assumes that treatment is single dimensional. Thus, the predict(X) of model_final gives the const_marginal_effect(X). The single dimensionality allows us to implement effect_interval(X, T0, T1) based on the const_marginal_effect_interval.
- __init__()
Methods
__init__()ate_inference([X, T0, T1])ate_interval([X, T0, T1, alpha])const_marginal_ate_inference([X])const_marginal_ate_interval([X, alpha])const_marginal_effect_inference(X)const_marginal_effect_interval(X, *[, alpha])effect_inference(X, *, T0, T1)effect_interval(X, *, T0, T1[, alpha])fit(estimator, *args, **kwargs)Fits the inference model.
marginal_ate_inference(T[, X])marginal_ate_interval(T[, X, alpha])marginal_effect_inference(T, X)marginal_effect_interval(T, X, *[, alpha])prefit(estimator, *args, **kwargs)Perform any necessary logic before the estimator's fit has been called.
- fit(estimator, *args, **kwargs)[source]
Fits the inference model.
This is called after the estimator’s fit.
- prefit(estimator, *args, **kwargs)
Perform any necessary logic before the estimator’s fit has been called.