Skip to main content
Ctrl+K

pywhy-graphs v0.2.0.dev0

  • Installation
  • Reference API
  • Usage (Simple Examples)
  • User Guide
  • Release History
  • GitHub
  • Installation
  • Reference API
  • Usage (Simple Examples)
  • User Guide
  • Release History
  • GitHub

Section Navigation

  • 1. Causal Graphs in PyWhy
  • 2. Functional Causal Graphical Models
    • 2.2.1.1. pywhy_graphs.functional.discrete.make_random_discrete_graph
    • 2.2.1.2. pywhy_graphs.functional.discrete.add_cpd_for_node
    • 2.5.1. pywhy_graphs.functional.make_graph_linear_gaussian
    • 2.5.2. pywhy_graphs.functional.apply_linear_soft_intervention
    • 2.7.1. pywhy_graphs.functional.make_graph_multidomain
  • 3. Causal Graph Algorithms in PyWhy
    • 3.1.1. pywhy_graphs.algorithms.is_valid_mec_graph
    • 3.1.2. pywhy_graphs.algorithms.possible_ancestors
    • 3.1.3. pywhy_graphs.algorithms.possible_descendants
    • 3.1.4. pywhy_graphs.algorithms.discriminating_path
    • 3.1.5. pywhy_graphs.algorithms.is_definite_noncollider
    • 3.1.6. pywhy_graphs.algorithms.valid_pag
    • 3.1.7. pywhy_graphs.algorithms.mag_to_pag
    • 3.1.8. pywhy_graphs.algorithms.pag_to_mag
    • 3.1.9. pywhy_graphs.algorithms.check_pag_definition
    • 3.1.10. pywhy_graphs.networkx.bidirected_to_unobserved_confounder
    • 3.1.11. pywhy_graphs.networkx.m_separated
    • 3.1.12. pywhy_graphs.networkx.is_minimal_m_separator
    • 3.1.13. pywhy_graphs.networkx.minimal_m_separator
    • 3.2.1. pywhy_graphs.algorithms.pds
    • 3.2.2. pywhy_graphs.algorithms.pds_path
    • 3.2.3. pywhy_graphs.algorithms.uncovered_pd_path
    • 3.3.1. pywhy_graphs.algorithms.pds_t
    • 3.3.2. pywhy_graphs.algorithms.pds_t_path
    • 3.4.1. pywhy_graphs.algorithms.acyclification
  • 5. Simulation module
    • 5.1.1. pywhy_graphs.simulate.simulate_linear_var_process
    • 5.1.2. pywhy_graphs.simulate.simulate_data_from_var
    • 5.1.3. pywhy_graphs.simulate.simulate_var_process_from_summary_graph
  • 6. Importing causal graphs to PyWhy-Graphs, or exporting PyWhy-Graphs to another package
    • 6.1.1. pywhy_graphs.export.graph_to_clearn
    • 6.1.2. pywhy_graphs.export.clearn_to_graph
    • 6.2.1. pywhy_graphs.export.graph_to_numpy
    • 6.2.2. pywhy_graphs.export.numpy_to_graph
    • 6.3.1. pywhy_graphs.export.graph_to_pcalg
    • 6.3.2. pywhy_graphs.export.pcalg_to_graph
    • 6.4.1. pywhy_graphs.export.graph_to_tetrad
    • 6.4.2. pywhy_graphs.export.tetrad_to_graph
  • 7. Glossary of Common Terms and API Elements
  • User guide: contents

User Guide#

  • 1. Causal Graphs in PyWhy
    • 1.1. Which graph class should I use?
    • 1.2. pywhy_graphs.classes: Causal graph types
    • 1.3. pywhy_graphs.classes.timeseries: Causal graph types for time-series (alpha)
  • 2. Functional Causal Graphical Models
    • 2.1. Representing a node’s functional relationships
    • 2.2. Specific Functional Graphs
    • 2.3. Linear
    • 2.4. Linear
    • 2.5. Linear functional graphs
    • 2.6. Multidomain
    • 2.7. Linear functional selection diagrams
  • 3. Causal Graph Algorithms in PyWhy
    • 3.1. Core Algorithms
    • 3.2. Algorithms for Markov Equivalence Classes
    • 3.3. Algorithms for Time-Series Graphs
    • 3.4. Algorithms for handling acyclicity
  • 4. Semi-directed (possibly-directed) Paths
    • 4.1. pywhy_graphs.algorithms.semi_directed_paths.all_semi_directed_paths
    • 4.2. pywhy_graphs.algorithms.semi_directed_paths.is_semi_directed_path
  • 5. Simulation module
    • 5.1. pywhy_graphs.simulate: Causal graphical model simulations
  • 6. Importing causal graphs to PyWhy-Graphs, or exporting PyWhy-Graphs to another package
    • 6.1. Causal-Learn
    • 6.2. Numpy (graphviz and dagitty)
    • 6.3. PCAlg from R (Experimental)
    • 6.4. Tetrad from Java
  • 7. Glossary of Common Terms and API Elements
    • 7.1. General Concepts

previous

Drawing timeseries graphs and setting their layout

next

1. Causal Graphs in PyWhy

This Page

  • Show Source

© Copyright 2025, Adam Li.

Created using Sphinx 7.2.6.

Built with the PyData Sphinx Theme 0.16.1.