DoWhy | An end-to-end library for causal inference

DoWhy | An end-to-end library for causal inference

Much like machine learning libraries have done for prediction, “DoWhy” is a Python library that aims to spark causal thinking and analysis. DoWhy provides a principled four-step interface for causal inference that focuses on explicitly modeling causal assumptions and validating them as much as possible. The key feature of DoWhy is its state-of-the-art refutation API that can automatically test causal assumptions for any estimation method, thus making inference more robust and accessible to non-experts. DoWhy supports estimation of the average causal effect for backdoor, frontdoor, instrumental variable and other identification methods, and estimation of the conditional effect (CATE) through an integration with the EconML library.

DoWhy Documentation
DoWhy GitHub Repository


EconML | Automated Learning and Intelligence for Causation and Economics

EconML | Automated Learning and Intelligence for Causation and Economics

EconML is a Python package that applies the power of machine learning techniques to estimate individualized causal responses from observational or experimental data. The suite of estimation methods provided in EconML represents the latest advances in causal machine learning. By incorporating individual machine learning steps into interpretable causal models, these methods improve the reliability of what-if predictions and make causal analysis quicker and easier for a broad set of users.

EconML Documentation
EconML GitHub Repository


EconML | General Tutorial on Causal Inference

EconML | General Tutorial on Causal Inference

If you are new to causal inference, it may be helpful to walk through a quick overview of concepts and techniques that we refer to over the course of the documentation. We provide a high level introduction to causal inference tailored for EconML.

Tutorial