Source code for dowhy.causal_estimators.distance_matching_estimator

from typing import Any, List, Optional, Union

import numpy as np
import pandas as pd
from sklearn.neighbors import NearestNeighbors

from dowhy.causal_estimator import CausalEstimate, CausalEstimator
from dowhy.causal_identifier import IdentifiedEstimand


[docs]class DistanceMatchingEstimator(CausalEstimator): """Simple matching estimator for binary treatments based on a distance metric. Supports additional parameters as listed below. """ # allowed types of distance metric Valid_Dist_Metric_Params = ["p", "V", "VI", "w"] def __init__( self, identified_estimand: IdentifiedEstimand, test_significance: bool = False, evaluate_effect_strength: bool = False, confidence_intervals: bool = False, num_null_simulations: int = CausalEstimator.DEFAULT_NUMBER_OF_SIMULATIONS_STAT_TEST, num_simulations: int = CausalEstimator.DEFAULT_NUMBER_OF_SIMULATIONS_CI, sample_size_fraction: int = CausalEstimator.DEFAULT_SAMPLE_SIZE_FRACTION, confidence_level: float = CausalEstimator.DEFAULT_CONFIDENCE_LEVEL, need_conditional_estimates: Union[bool, str] = "auto", num_quantiles_to_discretize_cont_cols: int = CausalEstimator.NUM_QUANTILES_TO_DISCRETIZE_CONT_COLS, num_matches_per_unit: int = 1, distance_metric: str = "minkowski", **kwargs, ): """ :param identified_estimand: probability expression representing the target identified estimand to estimate. :param test_significance: Binary flag or a string indicating whether to test significance and by which method. All estimators support test_significance="bootstrap" that estimates a p-value for the obtained estimate using the bootstrap method. Individual estimators can override this to support custom testing methods. The bootstrap method supports an optional parameter, num_null_simulations. If False, no testing is done. If True, significance of the estimate is tested using the custom method if available, otherwise by bootstrap. :param evaluate_effect_strength: (Experimental) whether to evaluate the strength of effect :param confidence_intervals: Binary flag or a string indicating whether the confidence intervals should be computed and which method should be used. All methods support estimation of confidence intervals using the bootstrap method by using the parameter confidence_intervals="bootstrap". The bootstrap method takes in two arguments (num_simulations and sample_size_fraction) that can be optionally specified in the params dictionary. Estimators may also override this to implement their own confidence interval method. If this parameter is False, no confidence intervals are computed. If True, confidence intervals are computed by the estimator's specific method if available, otherwise through bootstrap :param num_null_simulations: The number of simulations for testing the statistical significance of the estimator :param num_simulations: The number of simulations for finding the confidence interval (and/or standard error) for a estimate :param sample_size_fraction: The size of the sample for the bootstrap estimator :param confidence_level: The confidence level of the confidence interval estimate :param need_conditional_estimates: Boolean flag indicating whether conditional estimates should be computed. Defaults to True if there are effect modifiers in the graph :param num_quantiles_to_discretize_cont_cols: The number of quantiles into which a numeric effect modifier is split, to enable estimation of conditional treatment effect over it. :param num_matches_per_unit: The number of matches per data point. Default=1. :param distance_metric: Distance metric to use. Default="minkowski" that corresponds to Euclidean distance metric with p=2. :param kwargs: (optional) Additional estimator-specific parameters """ super().__init__( identified_estimand=identified_estimand, test_significance=test_significance, evaluate_effect_strength=evaluate_effect_strength, confidence_intervals=confidence_intervals, num_null_simulations=num_null_simulations, num_simulations=num_simulations, sample_size_fraction=sample_size_fraction, confidence_level=confidence_level, need_conditional_estimates=need_conditional_estimates, num_quantiles_to_discretize_cont_cols=num_quantiles_to_discretize_cont_cols, num_matches_per_unit=num_matches_per_unit, distance_metric=distance_metric, **kwargs, ) self.num_matches_per_unit = num_matches_per_unit self.distance_metric = distance_metric # Dictionary of any user-provided params for the distance metric # that will be passed to sklearn nearestneighbors self.distance_metric_params = {} for param_name in self.Valid_Dist_Metric_Params: param_val = getattr(self, param_name, None) if param_val is not None: self.distance_metric_params[param_name] = param_val self.logger.info("INFO: Using Distance Matching Estimator") self.matched_indices_att = None self.matched_indices_atc = None
[docs] def fit( self, data: pd.DataFrame, treatment_name: str, outcome_name: str, exact_match_cols=None, effect_modifier_names: Optional[List[str]] = None, ): """ Fits the estimator with data for effect estimation :param data: data frame containing the data :param treatment: name of the treatment variable :param outcome: name of the outcome variable :param exact_match_cols: List of column names whose values should be exactly matched. Typically used for columns with discrete values. :param effect_modifiers: Variables on which to compute separate effects, or return a heterogeneous effect function. Not all methods support this currently. """ self._set_data(data, treatment_name, outcome_name) self.exact_match_cols = exact_match_cols self._set_effect_modifiers(effect_modifier_names) # Check if the treatment is one-dimensional if len(self._treatment_name) > 1: error_msg = str(self.__class__) + "cannot handle more than one treatment variable" raise Exception(error_msg) # Checking if the treatment is binary if not pd.api.types.is_bool_dtype(self._data[self._treatment_name[0]]): error_msg = "Distance Matching method is applicable only for binary treatments" self.logger.error(error_msg) raise Exception(error_msg) self.logger.debug("Back-door variables used:" + ",".join(self._target_estimand.get_backdoor_variables())) self._observed_common_causes_names = self._target_estimand.get_backdoor_variables() if self._observed_common_causes_names: if self.exact_match_cols is not None: self._observed_common_causes_names = [ v for v in self._observed_common_causes_names if v not in self.exact_match_cols ] self._observed_common_causes = self._data[self._observed_common_causes_names] # Convert the categorical variables into dummy/indicator variables # Basically, this gives a one hot encoding for each category # The first category is taken to be the base line. self._observed_common_causes = pd.get_dummies(self._observed_common_causes, drop_first=True) else: self._observed_common_causes = None error_msg = "No common causes/confounders present. Distance matching methods are not applicable" self.logger.error(error_msg) raise Exception(error_msg) self.symbolic_estimator = self.construct_symbolic_estimator(self._target_estimand) self.logger.info(self.symbolic_estimator) return self
[docs] def estimate_effect( self, data: pd.DataFrame = None, treatment_value: Any = 1, control_value: Any = 0, target_units=None, **_ ): if data is None: data = self._data # this assumes a binary treatment regime self._target_units = target_units self._treatment_value = treatment_value self._control_value = control_value updated_df = pd.concat( [self._observed_common_causes, data[[self._outcome_name, self._treatment_name[0]]]], axis=1 ) if self.exact_match_cols is not None: updated_df = pd.concat([updated_df, data[self.exact_match_cols]], axis=1) treated = updated_df.loc[data[self._treatment_name[0]] == 1] control = updated_df.loc[data[self._treatment_name[0]] == 0] numtreatedunits = treated.shape[0] numcontrolunits = control.shape[0] fit_att, fit_atc = False, False est = None # TODO remove neighbors that are more than a given radius apart if target_units == "att": fit_att = True elif target_units == "atc": fit_atc = True elif target_units == "ate": fit_att = True fit_atc = True else: raise ValueError("Target units string value not supported") if fit_att: # estimate ATT on treated by summing over difference between matched neighbors if self.exact_match_cols is None: control_neighbors = NearestNeighbors( n_neighbors=self.num_matches_per_unit, metric=self.distance_metric, algorithm="ball_tree", **self.distance_metric_params, ).fit(control[self._observed_common_causes.columns].values) distances, indices = control_neighbors.kneighbors(treated[self._observed_common_causes.columns].values) self.logger.debug("distances:") self.logger.debug(distances) att = 0 for i in range(numtreatedunits): treated_outcome = treated.iloc[i][self._outcome_name].item() control_outcome = np.mean(control.iloc[indices[i]][self._outcome_name].values) att += treated_outcome - control_outcome att /= numtreatedunits if target_units == "att": est = att elif target_units == "ate": est = att * numtreatedunits # Return indices in the original dataframe self.matched_indices_att = {} treated_df_index = treated.index.tolist() for i in range(numtreatedunits): self.matched_indices_att[treated_df_index[i]] = control.iloc[indices[i]].index.tolist() else: grouped = updated_df.groupby(self.exact_match_cols) att = 0 for name, group in grouped: treated = group.loc[group[self._treatment_name[0]] == 1] control = group.loc[group[self._treatment_name[0]] == 0] if treated.shape[0] == 0: continue control_neighbors = NearestNeighbors( n_neighbors=self.num_matches_per_unit, metric=self.distance_metric, algorithm="ball_tree", **self.distance_metric_params, ).fit(control[self._observed_common_causes.columns].values) distances, indices = control_neighbors.kneighbors( treated[self._observed_common_causes.columns].values ) self.logger.debug("distances:") self.logger.debug(distances) for i in range(numtreatedunits): treated_outcome = treated.iloc[i][self._outcome_name].item() control_outcome = np.mean(control.iloc[indices[i]][self._outcome_name].values) att += treated_outcome - control_outcome # self.matched_indices_att[treated_df_index[i]] = control.iloc[indices[i]].index.tolist() att /= numtreatedunits if target_units == "att": est = att elif target_units == "ate": est = att * numtreatedunits if fit_atc: # Now computing ATC treated_neighbors = NearestNeighbors( n_neighbors=self.num_matches_per_unit, metric=self.distance_metric, algorithm="ball_tree", **self.distance_metric_params, ).fit(treated[self._observed_common_causes.columns].values) distances, indices = treated_neighbors.kneighbors(control[self._observed_common_causes.columns].values) atc = 0 for i in range(numcontrolunits): control_outcome = control.iloc[i][self._outcome_name].item() treated_outcome = np.mean(treated.iloc[indices[i]][self._outcome_name].values) atc += treated_outcome - control_outcome atc /= numcontrolunits if target_units == "atc": est = atc elif target_units == "ate": est += atc * numcontrolunits est /= numtreatedunits + numcontrolunits # Return indices in the original dataframe self.matched_indices_atc = {} control_df_index = control.index.tolist() for i in range(numcontrolunits): self.matched_indices_atc[control_df_index[i]] = treated.iloc[indices[i]].index.tolist() estimate = CausalEstimate( estimate=est, control_value=control_value, treatment_value=treatment_value, target_estimand=self._target_estimand, realized_estimand_expr=self.symbolic_estimator, ) estimate.add_estimator(self) return estimate
[docs] def construct_symbolic_estimator(self, estimand): expr = "b: " + ", ".join(estimand.outcome_variable) + "~" var_list = estimand.treatment_variable + estimand.get_backdoor_variables() expr += "+".join(var_list) return expr