{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Demo for the DoWhy causal API\n",
    "We show a simple example of adding a causal extension to any dataframe. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os, sys\n",
    "sys.path.append(os.path.abspath(\"../../../\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import dowhy.datasets\n",
    "import dowhy.api\n",
    "\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "\n",
    "from statsmodels.api import OLS"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>W0</th>\n",
       "      <th>v0</th>\n",
       "      <th>y</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>-1.289334</td>\n",
       "      <td>False</td>\n",
       "      <td>-3.324194</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>-1.100803</td>\n",
       "      <td>False</td>\n",
       "      <td>-2.035903</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>-3.564829</td>\n",
       "      <td>False</td>\n",
       "      <td>-5.986921</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>-2.036167</td>\n",
       "      <td>False</td>\n",
       "      <td>-2.869478</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>-2.781469</td>\n",
       "      <td>False</td>\n",
       "      <td>-6.127631</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>995</th>\n",
       "      <td>-1.178597</td>\n",
       "      <td>True</td>\n",
       "      <td>2.965997</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>996</th>\n",
       "      <td>0.223498</td>\n",
       "      <td>True</td>\n",
       "      <td>4.161892</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>997</th>\n",
       "      <td>-2.582064</td>\n",
       "      <td>False</td>\n",
       "      <td>-3.472824</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>998</th>\n",
       "      <td>-1.998788</td>\n",
       "      <td>False</td>\n",
       "      <td>-0.725005</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>999</th>\n",
       "      <td>-0.789288</td>\n",
       "      <td>False</td>\n",
       "      <td>-2.080137</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1000 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "           W0     v0         y\n",
       "0   -1.289334  False -3.324194\n",
       "1   -1.100803  False -2.035903\n",
       "2   -3.564829  False -5.986921\n",
       "3   -2.036167  False -2.869478\n",
       "4   -2.781469  False -6.127631\n",
       "..        ...    ...       ...\n",
       "995 -1.178597   True  2.965997\n",
       "996  0.223498   True  4.161892\n",
       "997 -2.582064  False -3.472824\n",
       "998 -1.998788  False -0.725005\n",
       "999 -0.789288  False -2.080137\n",
       "\n",
       "[1000 rows x 3 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = dowhy.datasets.linear_dataset(beta=5,\n",
    "        num_common_causes=1,\n",
    "        num_instruments = 0,\n",
    "        num_samples=1000,\n",
    "        treatment_is_binary=True)\n",
    "df = data['df']\n",
    "df['y'] = df['y'] + np.random.normal(size=len(df)) # Adding noise to data. Without noise, the variance in Y|X, Z is zero, and mcmc fails.\n",
    "#data['dot_graph'] = 'digraph { v ->y;X0-> v;X0-> y;}'\n",
    "\n",
    "treatment= data[\"treatment_name\"][0]\n",
    "outcome = data[\"outcome_name\"][0]\n",
    "common_cause = data[\"common_causes_names\"][0]\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:dowhy.causal_model:Causal Graph not provided. DoWhy will construct a graph based on data inputs.\n",
      "INFO:dowhy.causal_graph:If this is observed data (not from a randomized experiment), there might always be missing confounders. Adding a node named \"Unobserved Confounders\" to reflect this.\n",
      "INFO:dowhy.causal_model:Model to find the causal effect of treatment ['v0'] on outcome ['y']\n",
      "WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n",
      "INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.\n",
      "INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]\n",
      "INFO:dowhy.causal_identifier:Frontdoor variables for treatment and outcome:[]\n",
      "INFO:dowhy.do_sampler:Using WeightingSampler for do sampling.\n",
      "INFO:dowhy.do_sampler:Caution: do samplers assume iid data.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<AxesSubplot:xlabel='v0'>"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEWCAYAAAB7QRxFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAANZElEQVR4nO3df2ycd33A8fcnv+puzYhwXDHqGmc0YgoMSGcVUKWhNqBmKxrqBmPVMoFCFU3apE1smoqydRNsUze0qZ2UIRmNdZUqugWomFZWKFNRhURQnBSxNgHWVYW66w9jitbRpSTNZ3/cuXVNGp9zT/3cx/d+SVZ9d/b3+aiK33r8vefOkZlIkupa1/YAkqT+GHJJKs6QS1JxhlySijPkklScIZek4ja0cdCtW7fm5ORkG4eWpLKOHDnyvcwcW3p/KyGfnJxkZmamjUNLUlkR8Z0z3e/WiiQVZ8glqThDLknFtbJHfiYnT55kdnaWEydOtD3KSxoZGWF8fJyNGze2PYokPW9gQj47O8vmzZuZnJwkItoe58dkJvPz88zOzrJt27a2x5Gk5w3M1sqJEycYHR0dyIgDRASjo6MD/RuDpOE0MCEHBjbiCwZ9PknDaaBCLklauYHZI19q8vo7G13v4RuvbnQ9qU1N/3wMu+p98Iy864YbbuCmm256/vb+/fu5+eab2xtIknpkyLv27t3LrbfeCsDp06e5/fbb2bNnT8tTSdLyBnZrZbVNTk4yOjrKfffdxxNPPMHOnTsZHR1teyxJWlbfIY+IEeBe4Lzuep/OzD/pd902XHfdddxyyy08/vjj7N27t+1xJKknTWytPAtcmZlvAt4M7I6Itzaw7qq75ppruOuuuzh8+DBXXXVV2+NIUk/6PiPPzAT+t3tzY/cj+123DZs2beKKK65gy5YtrF+/vu1xJKknjeyRR8R64AhwCXAgM7/W75ptXA50+vRpDh06xMGDB1f92JJ0rhq5aiUzn8vMNwPjwGUR8YalXxMR+yJiJiJm5ubmmjhso44dO8Yll1zCrl272L59e9vjSFLPGr1qJTN/EBH3ALuB+5c8Ng1MA0xNTQ3c1suOHTt46KGH2h5Dklas7zPyiBiLiC3dz88H3gl8s991JUm9aeKM/KeBf+zuk68D/jkz//VcFsrMgX5jqs7zupI0WJq4auUbwM5+1xkZGWF+fn5g38p24f3IR0ZG2h5Fkl5kYF7ZOT4+zuzsLIP4ROiChb8QJEmDZGBCvnHjRv/yjiSdA980S5KKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJam4vkMeERdHxD0RcSwiHoiI321iMElSbzY0sMYp4Pcz82hEbAaORMTdmXmsgbUlScvo+4w8Mx/LzKPdz58GjgMX9buuJKk3je6RR8QksBP42hke2xcRMxExMzc31+RhJWmoNRbyiLgA+Azwe5n5P0sfz8zpzJzKzKmxsbGmDitJQ6+RkEfERjoRvy0zP9vEmpKk3jRx1UoAfw8cz8y/6X8kSdJKNHFGfjnwm8CVEfH17scvNbCuJKkHfV9+mJlfAaKBWSRJ58BXdkpScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqbhGQh4Rn4yIJyPi/ibWkyT1rqkz8luA3Q2tJUlagUZCnpn3At9vYi1J0sq4Ry5Jxa1ayCNiX0TMRMTM3Nzcah1Wkta8VQt5Zk5n5lRmTo2Nja3WYSVpzXNrRZKKa+ryw08BXwVeFxGzEfHBJtaVJC1vQxOLZOa1TawjSVo5t1YkqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklRcIyGPiN0R8a2IeDAirm9iTUlSb/oOeUSsBw4AvwjsAK6NiB39ritJ6k0TZ+SXAQ9m5kOZ+SPgduDdDawrSepBEyG/CHhk0e3Z7n2SpFWwYbUOFBH7gH0AExMTq3XYvkxef2fbI6wpD994ddsjrBn+v9RiTZyRPwpcvOj2ePe+F8nM6cycysypsbGxBg4rSYJmQn4Y2B4R2yJiE/DrwL80sK4kqQd9b61k5qmI+B3gC8B64JOZ+UDfk0mSetLIHnlmfh74fBNrSZJWxld2SlJxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScX1FfKIeG9EPBARpyNiqqmhJEm96/eM/H7gV4B7G5hFknQONvTzzZl5HCAimplGkrRi7pFLUnHLnpFHxJeAV53hof2Z+bleDxQR+4B9ABMTEz0PKEk6u2VDnpnvaOJAmTkNTANMTU1lE2tKktxakaTy+r388JqImAXeBtwZEV9oZixJUq/6vWrlDuCOhmaRJJ0Dt1YkqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKm5D2wMMsodvvLrtESRpWZ6RS1JxhlySiusr5BHxsYj4ZkR8IyLuiIgtDc0lSepRv2fkdwNvyMw3At8GPtz/SJKklegr5Jn5xcw81b15CBjvfyRJ0ko0uUe+F/i3BteTJPVg2csPI+JLwKvO8ND+zPxc92v2A6eA286yzj5gH8DExMQ5DStJ+nHLhjwz33G2xyPiA8C7gF2ZmWdZZxqYBpiamnrJr5MkrUxfLwiKiN3AHwJvz8xnmhlJkrQScZaT6OW/OeJB4DxgvnvXocz8rR6+bw74zjkfWEttBb7X9hDSGfhvs1mvycyxpXf2FXINhoiYycyptueQlvLf5urwlZ2SVJwhl6TiDPnaMN32ANJL8N/mKnCPXJKK84xckooz5JJUnCGX1Jjo2BMRN3RvT0TEZW3PtdYZ8qIi4ici4o8j4hPd29sj4l1tz6Wh93fA24Bru7efBg60N85wMOR1/QPwLJ0fGoBHgT9rbxwJgLdk5m8DJwAy8ylgU7sjrX2GvK7XZuZfAScBuu91E+2OJHEyItYDCRARY8Dpdkda+wx5XT+KiPN54QfmtXTO0KU2/S1wB3BhRPw58BXgL9odae3zOvKiIuKdwB8BO4AvApcDH8jML7c5lxQRPwvsovMb4r9n5vGWR1rzDHlhETEKvJXOD8yhzPRd5tSqiDjjX43JzO+u9izDxJAXFRGXA1/PzB9GxB7gUuDmzPTtgdWaiPgPOtt9AYwA24BvZebrWx1sjXOPvK6PA89ExJuADwH/Bdza7kgadpn5c5n5xu5/twOXAV9te661zpDXdar7p/XeDRzIzAPA5pZnkl4kM48Cb2l7jrWurz/1plY9HREfBvYAvxAR64CNLc+kIRcRH1p0cx2dLb//bmmcoeEZeV3vo3O54Qcz83FgHPhYuyNJbF70cR5wJ53fGvUy8slOSY3ovhDoLzPzD9qeZdi4tVJMRDxN90VASx8CMjN/apVHkoiIDZl5qns1lVaZZ+SS+hYRRzPz0oj4OHARcBD44cLjmfnZ1oYbAp6RFxcRF9K5XhfwhRdq3QgwD1zJC9eTJ2DIX0aGvKiI+GXgr4FXA08CrwGOA77wQm24sHvFyv28EPAF/tr/MvOqlbo+Sufl+d/OzG103tviULsjaYitBy7ofmxe9PnCh15GnpHXdTIz5yNiXUSsy8x7IuKmtofS0HosMz/S9hDDypDX9YOIuAC4F7gtIp5k0ZNL0irzvfBb5FUrxUTERGZ+NyJ+Evg/OttjvwG8ArgtM+dbHVBDKSJemZnfb3uOYWXIi1m4zKv7+Wcy81fbnklSu3yys57Fv8L+TGtTSBoYhryefInPJQ0pt1aKiYjn6DypGcD5wDMLD+FL9KWhZMglqTi3ViSpOEMuScUZcmmJiHh/RPxn9+P9bc8jLcc9cmmRiHglMANM0bkq6Ajw85n5VKuDSWfhS/Q1tCLiRuCR7h+uJiL+FHgOuHvhVYoRcTewG/hUW3NKy3FrRcPsn4BfW3R74fNHFt03S+cPJUgDyzNyDa3MvC8iLoyIVwNjwFN03r9m5OzfKQ0Wz8g17A4C7wHeR+cM/VHg4kWPj3fvkwaWT3ZqqEXE64FPAFuBtwPP0nmC89Lulxyl82Sn7+yngeXWioZaZj4QEZuBRzPzMYCI+ChwuPslHzHiGnSekUtSce6RS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkq7v8BwujdRYoW77kAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# data['df'] is just a regular pandas.DataFrame\n",
    "df.causal.do(x=treatment,\n",
    "                     variable_types={treatment: 'b', outcome: 'c', common_cause: 'c'},\n",
    "                     outcome=outcome,\n",
    "                     common_causes=[common_cause],\n",
    "                     proceed_when_unidentifiable=True).groupby(treatment).mean().plot(y=outcome, kind='bar')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:dowhy.causal_model:Causal Graph not provided. DoWhy will construct a graph based on data inputs.\n",
      "INFO:dowhy.causal_graph:If this is observed data (not from a randomized experiment), there might always be missing confounders. Adding a node named \"Unobserved Confounders\" to reflect this.\n",
      "INFO:dowhy.causal_model:Model to find the causal effect of treatment ['v0'] on outcome ['y']\n",
      "WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n",
      "INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.\n",
      "INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]\n",
      "INFO:dowhy.causal_identifier:Frontdoor variables for treatment and outcome:[]\n",
      "INFO:dowhy.do_sampler:Using WeightingSampler for do sampling.\n",
      "INFO:dowhy.do_sampler:Caution: do samplers assume iid data.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<AxesSubplot:xlabel='v0'>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAERCAYAAABrWly6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAO0klEQVR4nO3db4xldX3H8ffH3YFt4kbq7BDp7uKQsEkLbS04RY0PihIjWiMhpRUTFAWyidVUU/vAP8na0LTRJ9Y/EMm2EFhjhBao2VbUkmqiJIXu7IL8WUK6IbY7W9RxQZDqKut++2Du6nSc2Xtn5uzcnd+8X8lk77nnN+d+H2zeOXvuuXdTVUiSVr8XDXsASVI3DLokNcKgS1IjDLokNcKgS1Ij1g/rhTdt2lTj4+PDenlJWpX27t37g6oam2/f0II+Pj7O5OTksF5eklalJP+10D4vuUhSIwy6JDXCoEtSI4Z2DV2ShuWFF15gamqKI0eODHuUBW3YsIEtW7YwMjIy8O8YdElrztTUFBs3bmR8fJwkwx7nV1QVhw8fZmpqinPOOWfg3/OSi6Q158iRI4yOjp6SMQdIwujo6KL/BWHQJa1Jp2rMj1vKfAZdkhrhNXRJa974h77c6fG+8/E/7PR4gzLojej6L6TUlWHFbS3ykoskrbAdO3bwqU996hfbH/3oR/n0pz+97OMadElaYddccw27du0C4NixY9x+++1cddVVyz5u30suSTYA3wRO762/s6o+NmfN6cAu4JXAYeBtVfWdZU8nSQ0aHx9ndHSUBx98kO9973tccMEFjI6OLvu4g1xD/ynw+qp6PskIcF+Sr1TV/bPWXAs8U1XnJrkS+ATwtmVPJ0mNuu6667j11lv57ne/yzXXXNPJMftecqkZz/c2R3o/NWfZZcBtvcd3ApfkVL/JU5KG6PLLL+erX/0qe/bs4Y1vfGMnxxzoLpck64C9wLnAjVX1wJwlm4GDAFV1NMmzwCjwgznH2Q5sBzj77LOXN7kkdWQYd+KcdtppvO51r+OMM85g3bp1nRxzoDdFq+rnVfV7wBbgoiS/vZQXq6qdVTVRVRNjY/P+hxuStCYcO3aM+++/n2uvvbazYy7qLpeq+iHwDeDSObsOAVsBkqwHXsLMm6OSpDn279/PueeeyyWXXMK2bds6O+4gd7mMAS9U1Q+T/BrwBmbe9JxtN3A18O/AFcDXq2rudXZJEnDeeefx5JNPdn7cQa6hnwXc1ruO/iLgH6rqX5JcD0xW1W7gZuDzSQ4ATwNXdj6pJHWoqk7pL+hayjlx36BX1cPABfM8v2PW4yPAHy/61SVpCDZs2MDhw4dP2a/QPf596Bs2bFjU7/ldLpLWnC1btjA1NcX09PSwR1nQ8f+xaDEMuqQ1Z2RkZFH/E9Bq4Xe5SFIjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNaJv0JNsTfKNJPuTPJbk/fOsuTjJs0ke6v3sODnjSpIWsn6ANUeBD1bVviQbgb1J7q2q/XPWfauq3tL9iJKkQfQ9Q6+qp6pqX+/xj4DHgc0nezBJ0uIs6hp6knHgAuCBeXa/Jsm3k3wlyfkL/P72JJNJJqenpxc/rSRpQQMHPcmLgbuAD1TVc3N27wNeXlWvAD4LfGm+Y1TVzqqaqKqJsbGxJY4sSZrPQEFPMsJMzL9QVXfP3V9Vz1XV873H9wAjSTZ1Oqkk6YQGucslwM3A41X1yQXWvKy3jiQX9Y57uMtBJUknNshdLq8F3gE8kuSh3nMfAc4GqKqbgCuA9yQ5CvwEuLKqqvtxJUkL6Rv0qroPSJ81NwA3dDWUJGnx/KSoJDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDWib9CTbE3yjST7kzyW5P3zrEmSzyQ5kOThJBeenHElSQtZP8Cao8AHq2pfko3A3iT3VtX+WWveBGzr/bwK+FzvT0nSCul7hl5VT1XVvt7jHwGPA5vnLLsM2FUz7gfOSHJW59NKkha0qGvoScaBC4AH5uzaDByctT3Fr0afJNuTTCaZnJ6eXuSokqQTGTjoSV4M3AV8oKqeW8qLVdXOqpqoqomxsbGlHEKStICBgp5khJmYf6Gq7p5nySFg66ztLb3nJEkrZJC7XALcDDxeVZ9cYNlu4J29u11eDTxbVU91OKckqY9B7nJ5LfAO4JEkD/We+whwNkBV3QTcA7wZOAD8GHh355NKkk6ob9Cr6j4gfdYU8N6uhpIkLZ6fFJWkRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWpE36AnuSXJ95M8usD+i5M8m+Sh3s+O7seUJPWzfoA1twI3ALtOsOZbVfWWTiaSJC1J3zP0qvom8PQKzCJJWoaurqG/Jsm3k3wlyfkLLUqyPclkksnp6emOXlqSBN0EfR/w8qp6BfBZ4EsLLayqnVU1UVUTY2NjHby0JOm4ZQe9qp6rqud7j+8BRpJsWvZkkqRFWXbQk7wsSXqPL+od8/ByjytJWpy+d7kk+SJwMbApyRTwMWAEoKpuAq4A3pPkKPAT4MqqqpM2sSRpXn2DXlVv77P/BmZua5QkDZGfFJWkRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRvQNepJbknw/yaML7E+SzyQ5kOThJBd2P6YkqZ9BztBvBS49wf43Adt6P9uBzy1/LEnSYvUNelV9E3j6BEsuA3bVjPuBM5Kc1dWAkqTBdHENfTNwcNb2VO+5X5Fke5LJJJPT09MdvLQk6bgVfVO0qnZW1URVTYyNja3kS0tS87oI+iFg66ztLb3nJEkrqIug7wbe2bvb5dXAs1X1VAfHlSQtwvp+C5J8EbgY2JRkCvgYMAJQVTcB9wBvBg4APwbefbKGlSQtrG/Qq+rtffYX8N7OJpIkLYmfFJWkRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWrEQEFPcmmSJ5IcSPKhefa/K8l0kod6P9d1P6ok6UTW91uQZB1wI/AGYArYk2R3Ve2fs/SOqnrfSZhRkjSAQc7QLwIOVNWTVfUz4HbgspM7liRpsQYJ+mbg4Kztqd5zc/1RkoeT3Jlk63wHSrI9yWSSyenp6SWMK0laSFdviv4zMF5VvwvcC9w236Kq2llVE1U1MTY21tFLS5JgsKAfAmafcW/pPfcLVXW4qn7a2/x74JXdjCdJGtQgQd8DbEtyTpLTgCuB3bMXJDlr1uZbgce7G1GSNIi+d7lU1dEk7wO+BqwDbqmqx5JcD0xW1W7gz5K8FTgKPA286yTOLEmaR9+gA1TVPcA9c57bMevxh4EPdzuaJGkx/KSoJDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDVioKAnuTTJE0kOJPnQPPtPT3JHb/8DScY7n1SSdEJ9g55kHXAj8CbgPODtSc6bs+xa4JmqOhf4W+ATXQ8qSTqxQc7QLwIOVNWTVfUz4HbgsjlrLgNu6z2+E7gkSbobU5LUz/oB1mwGDs7angJetdCaqjqa5FlgFPjB7EVJtgPbe5vPJ3liKUNLK2ATc/7+amniv9e79vKFdgwS9M5U1U5g50q+prQUSSaramLYc0iLMcgll0PA1lnbW3rPzbsmyXrgJcDhLgaUJA1mkKDvAbYlOSfJacCVwO45a3YDV/ceXwF8vaqquzElSf30veTSuyb+PuBrwDrglqp6LMn1wGRV7QZuBj6f5ADwNDPRl1YzLw1q1Ykn0pLUBj8pKkmNMOiS1AiDLkmNMOgSkBlXJdnR2z47yUXDnktaDN8UlYAknwOOAa+vqt9K8uvAv1bV7w95NGlgK/pJUekU9qqqujDJgwBV9UzvcxfSquElF2nGC71vFi2AJGPMnLFLq4ZBl2Z8Bvgn4Mwkfw3cB/zNcEeSFsdr6FJPkt8ELgEC/FtVPT7kkaRFMegSM3e1zPd8Vf33Ss8iLZVBl4AkjzBz/TzABuAc4ImqOn+og0mL4F0uElBVvzN7O8mFwJ8OaRxpSTxDlxaQ5JG5oZdOZZ6hS0CSP5+1+SLgQuB/hjSOtCQGXZqxcdbjo8CXgbuGNIu0JAZda17vA0Ubq+ovhj2LtBx+sEhrWpL1VfVz4LXDnkVaLs/Qtdb9BzPXyx9Kshv4R+B/j++sqruHNZi0WAZdmrEBOAy8nl/ej16AQdeqYdC11p3Zu8PlUX4Z8uO8p1erikHXWrcOeDH/P+THGXStKn6wSGtakn1VdeGw55C64F0uWuvmOzOXViXP0LWmJXlpVT097DmkLhh0SWqEl1wkqREGXZIaYdCleSS5Osl/9n6uHvY80iC8hi7NkeSlwCQwwcy96HuBV1bVM0MdTOrDDxZpTUvyceBgVd3Y2/5L4OfAvcfvfklyL3Ap8MVhzSkNwksuWuvuAP5k1vbxxwdnPTcFbF6xiaQl8gxda1pVPZjkzCS/AYwBzwA/YebLuqRVxTN0aeYrc68A3sbMGfshYOus/Vt6z0mnNN8U1ZqX5Hzg74BNwB8AP2XmjdDj3/Gyj5k3Rf1EqU5pXnLRmldVjyXZCByqqqcAkvwVsKe35HpjrtXAM3RJaoTX0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEf8H56qeJrR7RcIAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "df.causal.do(x={treatment: 1}, \n",
    "              variable_types={treatment:'b', outcome: 'c', common_cause: 'c'}, \n",
    "              outcome=outcome,\n",
    "              method='weighting', \n",
    "              common_causes=[common_cause],\n",
    "              proceed_when_unidentifiable=True).groupby(treatment).mean().plot(y=outcome, kind='bar')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:dowhy.causal_model:Model to find the causal effect of treatment ['v0'] on outcome ['y']\n",
      "WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n",
      "INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.\n",
      "INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]\n",
      "INFO:dowhy.causal_identifier:Frontdoor variables for treatment and outcome:[]\n",
      "INFO:dowhy.do_sampler:Using WeightingSampler for do sampling.\n",
      "INFO:dowhy.do_sampler:Caution: do samplers assume iid data.\n",
      "INFO:dowhy.causal_model:Model to find the causal effect of treatment ['v0'] on outcome ['y']\n",
      "WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n",
      "INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.\n",
      "INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]\n",
      "INFO:dowhy.causal_identifier:Frontdoor variables for treatment and outcome:[]\n",
      "INFO:dowhy.do_sampler:Using WeightingSampler for do sampling.\n",
      "INFO:dowhy.do_sampler:Caution: do samplers assume iid data.\n"
     ]
    }
   ],
   "source": [
    "cdf_1 = df.causal.do(x={treatment: 1}, \n",
    "              variable_types={treatment: 'b', outcome: 'c', common_cause: 'c'}, \n",
    "              outcome=outcome, \n",
    "              dot_graph=data['dot_graph'],\n",
    "              proceed_when_unidentifiable=True)\n",
    "\n",
    "cdf_0 = df.causal.do(x={treatment: 0}, \n",
    "              variable_types={treatment: 'b', outcome: 'c', common_cause: 'c'}, \n",
    "              outcome=outcome, \n",
    "              dot_graph=data['dot_graph'],\n",
    "              proceed_when_unidentifiable=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>W0</th>\n",
       "      <th>v0</th>\n",
       "      <th>y</th>\n",
       "      <th>propensity_score</th>\n",
       "      <th>weight</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>-0.782669</td>\n",
       "      <td>False</td>\n",
       "      <td>-0.792179</td>\n",
       "      <td>0.825287</td>\n",
       "      <td>1.211700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>-1.386957</td>\n",
       "      <td>False</td>\n",
       "      <td>-2.541074</td>\n",
       "      <td>0.943911</td>\n",
       "      <td>1.059422</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>-1.704419</td>\n",
       "      <td>False</td>\n",
       "      <td>-3.922381</td>\n",
       "      <td>0.970418</td>\n",
       "      <td>1.030484</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>-0.814005</td>\n",
       "      <td>False</td>\n",
       "      <td>-0.313702</td>\n",
       "      <td>0.834584</td>\n",
       "      <td>1.198202</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.029784</td>\n",
       "      <td>False</td>\n",
       "      <td>-0.307668</td>\n",
       "      <td>0.461182</td>\n",
       "      <td>2.168343</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>995</th>\n",
       "      <td>-0.587235</td>\n",
       "      <td>False</td>\n",
       "      <td>-0.086199</td>\n",
       "      <td>0.757990</td>\n",
       "      <td>1.319279</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>996</th>\n",
       "      <td>-0.518178</td>\n",
       "      <td>False</td>\n",
       "      <td>-0.673428</td>\n",
       "      <td>0.730369</td>\n",
       "      <td>1.369171</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>997</th>\n",
       "      <td>-0.285695</td>\n",
       "      <td>False</td>\n",
       "      <td>-2.356726</td>\n",
       "      <td>0.624268</td>\n",
       "      <td>1.601876</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>998</th>\n",
       "      <td>-1.146594</td>\n",
       "      <td>False</td>\n",
       "      <td>-4.006878</td>\n",
       "      <td>0.910335</td>\n",
       "      <td>1.098497</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>999</th>\n",
       "      <td>-1.636781</td>\n",
       "      <td>False</td>\n",
       "      <td>-4.698411</td>\n",
       "      <td>0.966051</td>\n",
       "      <td>1.035142</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1000 rows × 5 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "           W0     v0         y  propensity_score    weight\n",
       "0   -0.782669  False -0.792179          0.825287  1.211700\n",
       "1   -1.386957  False -2.541074          0.943911  1.059422\n",
       "2   -1.704419  False -3.922381          0.970418  1.030484\n",
       "3   -0.814005  False -0.313702          0.834584  1.198202\n",
       "4    0.029784  False -0.307668          0.461182  2.168343\n",
       "..        ...    ...       ...               ...       ...\n",
       "995 -0.587235  False -0.086199          0.757990  1.319279\n",
       "996 -0.518178  False -0.673428          0.730369  1.369171\n",
       "997 -0.285695  False -2.356726          0.624268  1.601876\n",
       "998 -1.146594  False -4.006878          0.910335  1.098497\n",
       "999 -1.636781  False -4.698411          0.966051  1.035142\n",
       "\n",
       "[1000 rows x 5 columns]"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "cdf_0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>W0</th>\n",
       "      <th>v0</th>\n",
       "      <th>y</th>\n",
       "      <th>propensity_score</th>\n",
       "      <th>weight</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>-2.094548</td>\n",
       "      <td>True</td>\n",
       "      <td>1.099802</td>\n",
       "      <td>0.013245</td>\n",
       "      <td>75.499593</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>-1.584775</td>\n",
       "      <td>True</td>\n",
       "      <td>1.996253</td>\n",
       "      <td>0.037724</td>\n",
       "      <td>26.508238</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>-2.287651</td>\n",
       "      <td>True</td>\n",
       "      <td>-0.454571</td>\n",
       "      <td>0.008865</td>\n",
       "      <td>112.808679</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>-2.287651</td>\n",
       "      <td>True</td>\n",
       "      <td>-0.454571</td>\n",
       "      <td>0.008865</td>\n",
       "      <td>112.808679</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>-0.427584</td>\n",
       "      <td>True</td>\n",
       "      <td>2.698249</td>\n",
       "      <td>0.308738</td>\n",
       "      <td>3.238989</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>995</th>\n",
       "      <td>1.803262</td>\n",
       "      <td>True</td>\n",
       "      <td>8.249998</td>\n",
       "      <td>0.979852</td>\n",
       "      <td>1.020562</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>996</th>\n",
       "      <td>-0.335329</td>\n",
       "      <td>True</td>\n",
       "      <td>4.826016</td>\n",
       "      <td>0.351590</td>\n",
       "      <td>2.844225</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>997</th>\n",
       "      <td>0.656759</td>\n",
       "      <td>True</td>\n",
       "      <td>8.514054</td>\n",
       "      <td>0.813633</td>\n",
       "      <td>1.229055</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>998</th>\n",
       "      <td>0.946281</td>\n",
       "      <td>True</td>\n",
       "      <td>5.565004</td>\n",
       "      <td>0.889192</td>\n",
       "      <td>1.124617</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>999</th>\n",
       "      <td>0.192547</td>\n",
       "      <td>True</td>\n",
       "      <td>3.447829</td>\n",
       "      <td>0.621941</td>\n",
       "      <td>1.607870</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1000 rows × 5 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "           W0    v0         y  propensity_score      weight\n",
       "0   -2.094548  True  1.099802          0.013245   75.499593\n",
       "1   -1.584775  True  1.996253          0.037724   26.508238\n",
       "2   -2.287651  True -0.454571          0.008865  112.808679\n",
       "3   -2.287651  True -0.454571          0.008865  112.808679\n",
       "4   -0.427584  True  2.698249          0.308738    3.238989\n",
       "..        ...   ...       ...               ...         ...\n",
       "995  1.803262  True  8.249998          0.979852    1.020562\n",
       "996 -0.335329  True  4.826016          0.351590    2.844225\n",
       "997  0.656759  True  8.514054          0.813633    1.229055\n",
       "998  0.946281  True  5.565004          0.889192    1.124617\n",
       "999  0.192547  True  3.447829          0.621941    1.607870\n",
       "\n",
       "[1000 rows x 5 columns]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "cdf_1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Comparing the estimate to Linear Regression\n",
    "First, estimating the effect using the causal data frame, and the 95% confidence interval."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAANIAAAASCAYAAAAucYD2AAAHjUlEQVR4nO3be/BVVRUH8A9EoWlmYwXTTA9+pEVqmRZJCtFDGqUMLHuNpk1CTTqU5aOY0J81jVhJZM0UvcxHo1OkjSZZiIzI2MiU/DKyEgJBMCkhCBNM0f5Y+8w9nN8593Hu5b/7nbmz791nr/1Yj73XWvvcEYODg/roo4/uMLLF8zPwbPqc02Hf0/FbbMZurMfPMakF3TtxMx7Fk3gEv8EpJW1HYBbuxeP4L36PTxm+trNza6n67C0Z4wosw8NpHduxGpfisIo1dErzAXwbd+M/aS7XV/RdRCf8KqKOfJvRHJbqbsY6sfadWIlPqNa3h1TL5NEKmjpy6WQtZzeZ0zB9GdVkkJfjO0JBD25zYhmuwEXYhl/iMbwa78P78THlivI1XCiM75ZE9xIch6lYUmh/PT6Kf+IGPIGT8F28NY2TYQiXVcx3Mt6BX5c8Ox/3YWka5yAcj0HMTt8f7pLmS3iD4PVmvLZinkV0yq886si3Fc3pgvf/wHJswhichh/i5NTm2RLanVhYUv94xVzqyKWTtQzpQF+qDGkErhaGcBMuaDKhIsam9lvxerHIDG/Hnfiy4YY0SyjFNYIR/ys8f27h90xhRBswUSgRPA+/wJnCiG9K9UPpU4bfpfL7Jc8OwZ6S+q9iLr6IT3dJc74whnV4m1DCVuiUX3nUkW87NA/iVNyGZ3L1c7FKbKKnCfkUsUMYQbuoI5cM7axlSAf6UnXUzhEW93HhLnWCV6Z+77WvEREKskvsmnmMFgzYpFwp4KnC75mpvFLDiCTaeen7eW3M92ixe20RClBEmbDgZ6k8vAc0y7FW+U5dhjr8yqOOfNuhuRO32teICPfse+n71DbHa4U6csnQjX6X6kvZiTQB8/EtrEgDdoK1QrAT8WL7KvkUvECcFHmcJIxroRDCdBwlmLVKYwfIY2wq15c8y+omixOqTNEyzE7lj5THSFV4byrv3880ZajDrwx15NutTtAw7Kcrno8WMcsrhHLfn8bqRCa05nG3aynVl6IhjcJ1Yqeb2+EAGbbjYizAA8JotmG8OPaX4pMFmjenco8IGI8qPF8hAvJ/5eoyAx1XMoeBVI5K3/9aMdcDhfD2Ch++GS4QvvQL8SacKIQ1v8c07aAOv6gn317oxCiNePX2ijZj0zh5bBCnxl1N+u6Ex92upVJfioZ0Cd6YJrO7xkAZFopMzI+FL59hHX5iuMv30lReKIxvsvBPx+EbmCYyflNzNLfhI/gcbhQGTMQG+SDxRU3m+UEcmvpqFpgSAhuT+327yOwUlbVbmnZQh1/Uk28vdGK+MPYlIqNYxNUiY/ln4foPCLd8tgjoJ+GPFX13wuNu11KpL/kY6S3CSq/U3DVoBxdhsTCa8SKjcpxwuX4qsk1l83hanForRTblTyIW2iyC8Hzq/EYhlPFCmRaJ43pIKNam1K7or+eRHdOL2ljTWBGkjhUB84A4DY7tMU07qMOvOvLthU7MweeFV3BmRZvLRHy1VWRe14grjAXiFBhs0n+7PO7FWir1JRPIKFwrsi7zio06xFSR/r5FnBbrBXPuE0LeIhg7kKPZkcrV4iTL4wmNXWxirn6v8Ie/IHafs9JnrUh970rtiqdfhiNTu82ap4mL2CruSaaJ+4pr9xNNM+xIZbv8qiPfXujEeWJze0BkbLc3bz4MWYJiShttm/G4F2tpqi+ZIR2MI0Qgtse+l06XpjY/SL8XthjwPaksS+E+IYLhkeKIzfC3VO6o6PPfqTywUP+UMNqjcYA4dmcI5TpcxFEbKvqsm2TIsFEoyJEiqbK/aMrQKb/qyLdbnfisuGReI4yo6mK1GTL37KAOaMp43Av9bqovWYz0ZGpQhmOF0q8UAmx1LI5OZTHFrVCfz6QtE4t4nTCyojuWBdNVRlHEh0W27oaK5wcIN2Ov6nW3g5elshNDrENTRKf8qiPfbnTiYhEXDYkM42Pq4fhUlmVmm6HI4271u6W+ZIa0W/UrIoNpoGsMz2yNF8H93zXSm3drBIqLhCuX4WScIHaFe3L1G8X9w6n4DL6ZezYN7xa7bzHjc4h4pSaPY/B1sStXZcdOF0mIX2meZDhCuAw7C/Uj8RUR9N+jcQLUpekUnfKrjnzr6sQ8ceH+hzSXVu7cBBHPFu9zXiXePGD45X2nPK67lgwt9aXZK0LtYJm4gB2n4asvxh14F/6i8R7YBOH2jRBxzbZCX+eKBS0Q9yKrU78zxE5wjuGMWyqYtEbERBMS7W4RPz1SMe/smC57kyGPU3C52K02pDmPEYH8QFrXrB7QzEgfGvdjk0SyhtjRi7fvdfi1v3GWMKK9YkOdU9LmIY11wYdEzLxCbBC7xAY9XZwES0QmMo86PO4GLfWlW0MqwzNioecKF2smni92piW4SrzMWsRmkdm7ROy0U8Rpc6tg2qoSmsVpjDNEPLBFLPby1F8ZJoj0ZztJhjvEO4InCqU9VOycD4r7iKsM33Hr0BwjlDCPAY2EzEbDDakOv/Y3sju954gYqQx32deQluM1glcniHhohzCS69Kn+MZHHR7XRVv6MqL/N4o++ugerf5G0UcffbSBviH10UcP8H/9I7v0iWMPrQAAAABJRU5ErkJggg==\n",
      "text/latex": [
       "$\\displaystyle 4.869733164425347$"
      ],
      "text/plain": [
       "4.869733164425347"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "(cdf_1['y'] - cdf_0['y']).mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAASCAYAAABYSzJ9AAAIPklEQVR4nO2bebCXUxjHPzeRvYylxjB0L5F9jVAKXSpSdkaWoRiZbGWJdGWMbKms2YlhSNayVqOyZNC1015uiOTmciuV/PE97/zO7/ze/X0tzfy+M3fOr/M+z3ue87znOc9znudUUVNTQxlllLFuoIlP33bAI8D3wEpgPjAC2CLhu08C7gKmAr8Ba4EnI3i6A28CdcByYC7wHNA+Zx4bZxrZ1gLn5zCPc6z3Bf2tyUGupDxp5ZofQv9jhDxHAi8YupVoTb0BdPOhvQWYCHyHvuNSYAYwBNgyB/otkU5eAGYbnmXANOA8/G2hAugDTAd+B/4APgIuDKA/h2zfPlJfTR2GKuA9YBvgJeAboB1wCXAMcCjwS8iANq4D9kYTrQN2jaC/BbjSvP9FYAmwE3A8cCJwFqWGkobHxvbA3UbGTXOaRy1wQ8CzDsARwGsR74gjV1KeLHItQ5u2i99D5LkVGIh09jL6NlsD+wOdgAkO/WXAJ8BbwE/AJsDBQA3Q1/z+LgP9ycB9wA/AZGAh0BI4AXgI6Gpo1lo8TwJnmPc/DTQCXcx7DkHry0Yt6XUcS1+uwd6LjLU/8ioehiMF3YR2lzi4zAw+GzgcKSkIrYABwGJgL6QgD52BScBQio0vDY+NCuBRZOzjzLuyzgP00WoDnr1v2gdC+OPKlZQni1z1yBDiog9afI8j4/nTeb6+D8/mwAqf/puAQcA1wEUZ6GcCPYDxwF9W/yDgQ7TBnwA8b/p7IWOdh5zWEtO/gaHpjZzEOOtdtaTTcWx92W69CqhGIdA9DsMQFA70RjtZHEwGZlG8YwVhByPLdIoNz3tPA9ptsvLY6I92vHPR3IKQZB5h2BPt+ovQoskqV1aepHLFRTNkNAvxX3wAq3z6/IwP4FnT7pyRfhLwCsXGCgo/7ze/O1n9vUx7BwVjBc1nsPl9cYAMLsJ0nEhftsF2Nu2blE6qAXgX2NgMnDdmIUHbAVs5zzoCmwFv58DjoS0wDBgJTEktdTL0Ne3DBJ9j0siVdS5x5GqGzseD0PGoM7BeAG0XtFGOQ+uoO3CV4YubV7BxnGk/+4fooWAQq62+Vqad60Pv9XVAHjcKYTpOpC87JN7FtDMDBp2FPHAbdNjPE0uRkMOBr1Co8Qvy+j3QOeWCHHhAcx6DdrRBuc4iGBuhBb8GnZf8kEaurHOJIxdo8Y5x+uYhj/6O03+gaVegJNAezvMpKJH3c8BYA9AZvDlwAHAYMr5hOdG7aErhLPq61e951dY+PJUWbyXK9QQhSseJ9GUbbHPTLgsY2OtvESJcFoxA4fgjKKb3MBt4jNKwNy3P9cC+6MMuzyBvEpyC9Dae4kSIjTRyZZ1LHLkeRRnyL1GkVYlCwb4ogdIe+NSi38a0A9FG2gGd61oDt6NN/zmKw08bA1AyyMPrKPsaZuBJ6F0MQ0YyAWVkPYwHTgcuB55BDgJ0nrQTS1HVkygdJ9KXX2r6v8KVwFhkaFXorLw/Cj+eQlm0rDwHIU90B4UkwL8BLyQaHfA8jVx5zCVKLtDinISSe43AFyjxOBx5jxqH3ltTq1GkMw1lkz9H58I6lLwLCo9boSRaK5QEqkSeZ7+c6G30B65AHrK38+wZZMBVyJBGo2NHLTKqhYbOPT66iNJxIn3ZBut50Ob4w+uvjxAwDTqhEs3LaEebixbHJ0joRUixlRl4mgJPoJB/MP8edkclgDpKSxlp5cpjLlFyRcFL1HR0+utNOwNFPzYaKXixdhHvX4xqktWohvpEzvQXIwP8Cp3JlzrP16Dz8NXIW59t/mYhvTUYOr8ozkMcHdebNpa+bIP91rRtAl7sZd2CzrhZcKxp/UomjSjt3gSFf2l5NkVza4vOC3Yxe4ihedD8e0SKOQQhKqmTRq485hIn2RQGL+R0qwbeOqoP4PvVtBvFHGcBMqrdKU0upqW/FJUtv0DGGnQBZBVyCnsCG6LQticyrJ3ROXdeiCxxdJxIX/YZ1lv41Wih265+M3RpohH4IETAtGhm2qAyjNdvp7yT8qxEivPDfsiwpyEF5hUub4hCrTUhY6eRK+tc4sgVBa9a4GZRJ6KNYjdK1xEUkiphC93FtqaNu7GE0V+Fzq21KEO7xIcmCqeh7PDTITRxdZxIX7bBzkElnWqgH8UXJ25AO+loiut8VegQPgf/2lpcTKWQyBiNwlkPXdFmsQLdwkrLs5zgK341aJE/Tni2NClORkmJVwlO6qSRK+tc4sgF8uALKa3t7ohuVUHpxZQFqN7ZA5Um7rSeVQNHI29iZ2TboJDWTXg2AW5EiZn3KHibpPQeBqPLNB8bWdww2MXm6DqqjX2A28y7wzLRcXWcSF/uTaeL0ERHoXuNX6PkRmcUCl/r0E9EFxhaUxp/9zR/UKhptUcJItDO5t3IGYtqpkeZMb37lG1R6FuBzhL2tcg0PGmQZB4uvJAo7GbTf4G4cp2K8gBT0MJqQJt0d+RBJqBMpot+aNMYbmhnoDXSE3mc8yk2tm7AzSgqmIe+WUuUbKlE37VPBnrQ+XOoGX8qSji5mE/hu4JKg8tR6NyA1lZ303ccuusbhCTfPra+XIOdg2pZQ9Hd4W7o7uVI5GXdHSsM+yAl2aikkARaQGGh/2XG6ofCjV7oksZStChGIe9vIw1PGiSZh422qNySNqnzTyGJXJNRfX5fFLFsgnb7aaguOwb/G2B1KFt/PfIcHZGnegUZ2ocO/dvoDvhhZqwWyKvPNGOMotgbJqWHQj11PXSG9cM7FBvsWLS2zkRnyEXIAG82cwxC0m8fW18V5f9eV0YZ6w7+T3XYMsooIwJlgy2jjHUIfwMP3AqPdfcq7QAAAABJRU5ErkJggg==\n",
      "text/latex": [
       "$\\displaystyle 0.18841744756332976$"
      ],
      "text/plain": [
       "0.18841744756332976"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "1.96*(cdf_1['y'] - cdf_0['y']).std() / np.sqrt(len(df))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Comparing to the estimate from OLS."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<table class=\"simpletable\">\n",
       "<caption>OLS Regression Results</caption>\n",
       "<tr>\n",
       "  <th>Dep. Variable:</th>            <td>y</td>        <th>  R-squared (uncentered):</th>      <td>   0.926</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Model:</th>                   <td>OLS</td>       <th>  Adj. R-squared (uncentered):</th> <td>   0.926</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Method:</th>             <td>Least Squares</td>  <th>  F-statistic:       </th>          <td>   6276.</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Date:</th>             <td>Sat, 05 Dec 2020</td> <th>  Prob (F-statistic):</th>           <td>  0.00</td> \n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Time:</th>                 <td>18:02:18</td>     <th>  Log-Likelihood:    </th>          <td> -1436.6</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>No. Observations:</th>      <td>  1000</td>      <th>  AIC:               </th>          <td>   2877.</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Df Residuals:</th>          <td>   998</td>      <th>  BIC:               </th>          <td>   2887.</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Df Model:</th>              <td>     2</td>      <th>                     </th>              <td> </td>   \n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Covariance Type:</th>      <td>nonrobust</td>    <th>                     </th>              <td> </td>   \n",
       "</tr>\n",
       "</table>\n",
       "<table class=\"simpletable\">\n",
       "<tr>\n",
       "   <td></td>     <th>coef</th>     <th>std err</th>      <th>t</th>      <th>P>|t|</th>  <th>[0.025</th>    <th>0.975]</th>  \n",
       "</tr>\n",
       "<tr>\n",
       "  <th>x1</th> <td>    1.8467</td> <td>    0.022</td> <td>   82.505</td> <td> 0.000</td> <td>    1.803</td> <td>    1.891</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>x2</th> <td>    5.0277</td> <td>    0.067</td> <td>   74.507</td> <td> 0.000</td> <td>    4.895</td> <td>    5.160</td>\n",
       "</tr>\n",
       "</table>\n",
       "<table class=\"simpletable\">\n",
       "<tr>\n",
       "  <th>Omnibus:</th>       <td> 0.268</td> <th>  Durbin-Watson:     </th> <td>   1.984</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Prob(Omnibus):</th> <td> 0.874</td> <th>  Jarque-Bera (JB):  </th> <td>   0.291</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Skew:</th>          <td> 0.040</td> <th>  Prob(JB):          </th> <td>   0.864</td>\n",
       "</tr>\n",
       "<tr>\n",
       "  <th>Kurtosis:</th>      <td> 2.973</td> <th>  Cond. No.          </th> <td>    3.02</td>\n",
       "</tr>\n",
       "</table><br/><br/>Notes:<br/>[1] R² is computed without centering (uncentered) since the model does not contain a constant.<br/>[2] Standard Errors assume that the covariance matrix of the errors is correctly specified."
      ],
      "text/plain": [
       "<class 'statsmodels.iolib.summary.Summary'>\n",
       "\"\"\"\n",
       "                                 OLS Regression Results                                \n",
       "=======================================================================================\n",
       "Dep. Variable:                      y   R-squared (uncentered):                   0.926\n",
       "Model:                            OLS   Adj. R-squared (uncentered):              0.926\n",
       "Method:                 Least Squares   F-statistic:                              6276.\n",
       "Date:                Sat, 05 Dec 2020   Prob (F-statistic):                        0.00\n",
       "Time:                        18:02:18   Log-Likelihood:                         -1436.6\n",
       "No. Observations:                1000   AIC:                                      2877.\n",
       "Df Residuals:                     998   BIC:                                      2887.\n",
       "Df Model:                           2                                                  \n",
       "Covariance Type:            nonrobust                                                  \n",
       "==============================================================================\n",
       "                 coef    std err          t      P>|t|      [0.025      0.975]\n",
       "------------------------------------------------------------------------------\n",
       "x1             1.8467      0.022     82.505      0.000       1.803       1.891\n",
       "x2             5.0277      0.067     74.507      0.000       4.895       5.160\n",
       "==============================================================================\n",
       "Omnibus:                        0.268   Durbin-Watson:                   1.984\n",
       "Prob(Omnibus):                  0.874   Jarque-Bera (JB):                0.291\n",
       "Skew:                           0.040   Prob(JB):                        0.864\n",
       "Kurtosis:                       2.973   Cond. No.                         3.02\n",
       "==============================================================================\n",
       "\n",
       "Notes:\n",
       "[1] R² is computed without centering (uncentered) since the model does not contain a constant.\n",
       "[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
       "\"\"\""
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model = OLS(np.asarray(df[outcome]), np.asarray(df[[common_cause, treatment]], dtype=np.float64))\n",
    "result = model.fit()\n",
    "result.summary()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": false,
   "sideBar": true,
   "skip_h1_title": true,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}