Propensity-based methods
Propensity-based methods are backdoor estimation methods that involve estimating the action as a function of the backdoor variables, \(P(A|W)\). This fitted function is then used to derive matching, stratification or weighting methods.
Propensity-Based Matching
>>> causal_estimate_match = model.estimate_effect(identified_estimand,
>>> method_name="backdoor.propensity_score_matching",
>>> target_units="atc")
>>> print(causal_estimate_match)
>>> print("Causal Estimate is " + str(causal_estimate_match.value))
Propensity-based Stratification
>>> causal_estimate_strat = model.estimate_effect(identified_estimand,
>>> method_name="backdoor.propensity_score_stratification",
>>> target_units="att")
>>> print(causal_estimate_strat)
>>> print("Causal Estimate is " + str(causal_estimate_strat.value))
Inverse Propensity Weighting
>>> causal_estimate_ipw = model.estimate_effect(identified_estimand,
>>> method_name="backdoor.propensity_score_weighting",
>>> target_units = "ate",
>>> method_params={"weighting_scheme":"ips_weight"})
>>> print(causal_estimate_ipw)
>>> print("Causal Estimate is " + str(causal_estimate_ipw.value))