dowhy.gcm.ml package
Submodules
dowhy.gcm.ml.autogluon module
dowhy.gcm.ml.classification module
- class dowhy.gcm.ml.classification.ClassificationModel[source]
- Bases: - PredictionModel- abstract property classes: List[str]
 
- class dowhy.gcm.ml.classification.SklearnClassificationModel(sklearn_mdl: Any)[source]
- Bases: - SklearnRegressionModel,- ClassificationModel- property classes: List[str]
 
- dowhy.gcm.ml.classification.create_ada_boost_classifier(**kwargs) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_extra_trees_classifier(**kwargs) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_gaussian_nb_classifier(**kwargs) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_gaussian_process_classifier(**kwargs) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_hist_gradient_boost_classifier(**kwargs) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_knn_classifier(**kwargs) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_logistic_regression_classifier(**kwargs) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_polynom_logistic_regression_classifier(degree: int = 3, **kwargs_logistic_regression) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_random_forest_classifier(**kwargs) SklearnClassificationModel[source]
- dowhy.gcm.ml.classification.create_support_vector_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.prediction_model module
- class dowhy.gcm.ml.prediction_model.PredictionModel[source]
- Bases: - object- Represents general prediction model implementations. Each prediction model should provide a fit and a predict method. 
dowhy.gcm.ml.regression module
- class dowhy.gcm.ml.regression.InvertibleExponentialFunction[source]
- Bases: - InvertibleFunction
- class dowhy.gcm.ml.regression.InvertibleIdentityFunction[source]
- Bases: - InvertibleFunction
- class dowhy.gcm.ml.regression.InvertibleLogarithmicFunction[source]
- Bases: - InvertibleFunction
- class dowhy.gcm.ml.regression.LinearRegressionWithFixedParameter(coefficients: ndarray, intercept: float)[source]
- Bases: - PredictionModel
- class dowhy.gcm.ml.regression.SklearnRegressionModel(sklearn_mdl: Any)[source]
- Bases: - PredictionModel- General wrapper class for sklearn models. - clone()[source]
- Clones the prediction model using the same hyper parameters but not fitted. :return: An unfitted clone of the prediction model. 
 - property sklearn_model: Any
 
- dowhy.gcm.ml.regression.create_ada_boost_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_elastic_net_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_extra_trees_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_gaussian_process_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_hist_gradient_boost_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_knn_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_lasso_lars_ic_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_lasso_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_linear_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_linear_regressor_with_given_parameters(coefficients: ndarray, intercept: float = 0) LinearRegressionWithFixedParameter[source]
- dowhy.gcm.ml.regression.create_polynom_regressor(degree: int = 2, **kwargs_linear_model) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_random_forest_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_ridge_regressor(**kwargs) SklearnRegressionModel[source]
- dowhy.gcm.ml.regression.create_support_vector_regressor(**kwargs) SklearnRegressionModel[source]
Module contents
This module defines implementations of PredictionModel used by the different
FunctionalCausalModel implementations, such as PostNonlinearModel or
AdditiveNoiseModel.