Source code for dowhy.causal_prediction.dataloaders.fast_data_loader
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
class _InfiniteSampler(torch.utils.data.Sampler):
    """Wraps another Sampler to yield an infinite stream."""
    def __init__(self, sampler):
        self.sampler = sampler
    def __iter__(self):
        while True:
            for batch in self.sampler:
                yield batch
[docs]class InfiniteDataLoader:
    def __init__(self, dataset, weights, batch_size, num_workers):
        super().__init__()
        if weights is not None:
            sampler = torch.utils.data.WeightedRandomSampler(weights, replacement=True, num_samples=batch_size)
        else:
            sampler = torch.utils.data.RandomSampler(dataset, replacement=True)
        if weights == None:
            weights = torch.ones(len(dataset))
        batch_sampler = torch.utils.data.BatchSampler(sampler, batch_size=batch_size, drop_last=True)
        self._infinite_iterator = iter(
            torch.utils.data.DataLoader(dataset, num_workers=num_workers, batch_sampler=_InfiniteSampler(batch_sampler))
        )
        self._length = len(batch_sampler)
    def __iter__(self):
        while True:
            yield next(self._infinite_iterator)
    def __len__(self):
        return self._length 
[docs]class FastDataLoader:
    """DataLoader wrapper with slightly improved speed by not respawning worker
    processes at every epoch."""
    def __init__(self, dataset, batch_size, num_workers):
        super().__init__()
        batch_sampler = torch.utils.data.BatchSampler(
            torch.utils.data.RandomSampler(dataset, replacement=False), batch_size=batch_size, drop_last=False
        )
        self._infinite_iterator = iter(
            torch.utils.data.DataLoader(dataset, num_workers=num_workers, batch_sampler=_InfiniteSampler(batch_sampler))
        )
        self._length = len(batch_sampler)
    def __iter__(self):
        for _ in range(len(self)):
            yield next(self._infinite_iterator)
    def __len__(self):
        return self._length